Cho tam giác ABC cân tại A, đường cao AH (H thuộc BC)
Bài 5 trang 85 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
a) Chứng minh ∆AHB = ∆AHC.
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH.
c) Gọi M là trung điểm của AC, CD cắt AH tại G. Chứng minh ba điểm B, G, M thẳng hàng.
d) Chứng minh chu vi ∆ABC lớn hơn AH + 3BG.
Lời giải:
a) Xét hai tam giác vuông ∆AHB và ∆AHC có:
AH chung, AB = AC (tam giác ABC cân tại A) nên ∆AHB = ∆AHC (cạnh huyền – cạnh góc vuông).
b) Từ câu a) ∆AHB = ∆AHC , suy ra (hai góc tương ứng).
Ta có AC // HD, suy ra (so le trong), từ đó nên ∆ADH cân tại D, suy ra AD = DH. (1)
c) Ta có (vì tam giác AHB vuông tại H), (AH vuông góc với BC tại H). Vì nên , suy ra tam giác BHD cân tại D, do đó BD = DH. (2)
Từ (1) và (2) suy ra D là trung điểm của AB.
Tam giác ABC có CD, AH là hai trung tuyến cắt nhau tại G nên G là trọng tâm tam giác.
Khi đó BG là trung tuyến, M là trung điểm của AC nên BG đi qua M, tức B, G, M thẳng hàng.
d) Trên tia BM lấy điểm K sao cho M là trung điểm của BK, khi đó 2BM = BK.
Vì G là trọng tâm của tam giác ABC nên 3BG = 2BM. Từ đó BK = 2BM = 3BG.
Ta chứng minh được ∆BMC = ∆KMA (c.g.c), suy ra BC = AK.
Trong tam giác ABK, ta có:
AK + AB > BK hay BC + AB > BK, mà BK = 2BM = 3BG nên BC + AB > 3BG. (3)
Trong tam giác vuông AHC, ta có AC > AH. (4)
Từ (3) và (4) suy ra BC + AC + AB > AH + 3BG.
Xem thêm các bài giải vở thực hành Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
- Bài 1 (9.31) trang 84 vở thực hành Toán lớp 7 Tập 2: Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân....
- Bài 2 (9.32) trang 84 vở thực hành Toán lớp 7 Tập 2: Cho ba điểm phân biệt thẳng hàng A, B, C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại A. Với điểm M thuộc d, M khác A, vẽ đường thẳng CM. Qua B kẻ đường thẳng vuông góc với đường thẳng CM, cắt d tại N. Chứng minh đường thẳng BM vuông góc với đường thẳng CN....
- Bài 3 (9.34) trang 84 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A....
- Bài 4 (9.35) trang 84 vở thực hành Toán lớp 7 Tập 2: Kí hiệu SABC là diện tích tam giác ABC. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của BC...
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT