15 Bài tập Hình thang lớp 8 (có đáp án)
Bài viết 15 Bài tập Hình thang có đáp án gồm các dạng bài tập về Hình thang lớp 8 từ cơ bản đến nâng cao giúp học sinh lớp 8 biết cách làm bài tập Hình thang.
Bài 1: Chọn câu đúng trong các câu sau:
A. Hình thang có ba góc tù, một góc nhọn.
B. Hình thang có ba góc vuông, một góc nhọn.
C. Hình thang có ba góc nhọn, một góc tù.
D. Hình thanh có nhiều nhất hai góc nhọn và nhiều nhất hai góc tù.
Lời giải:
Ta có tổng các góc của hình thang bằng 3600.
+ Hình thang có ba góc tù, một góc nhọn.
Ví dụ: Hình thang có 3 góc tù là 1000,1200,1350 và 1 góc nhọn là 600.
⇒ Tổng 4 góc của hình thang bằng 1000 + 1200 + 1350 + 600 = 4150 > 3600
⇒ Không tồn tại hình thang có ba góc tù, một góc nhọn. ⇒ Đáp án A sai
+ Hình thang có ba góc vuông, một góc nhọn.
Ví dụ: Hình thang có 3 góc bằng 900 và một góc nhọn bằng 650.
⇒ Tổng 4 góc của hình thang bằng 900 + 900 + 900 + 650 = 3350 < 3600
⇒ Không tồn tại hình thang ba góc vuông, một góc nhọn. ⇒ Đáp án B sai.
+ Hình thang có ba góc nhọn, một góc tù.
Ví dụ: Hình thang có ba góc nhọn là 450,750,800, một góc tù là 1600
⇒ Tổng 4 góc của hình thang bằng 450 + 750 + 800 + 1600 = 3600
⇒ Tồn tại Hình thang có ba góc nhọn, một góc tù. ⇒ Đáp án C đúng
⇒ Hình thang có nhiều nhất là 3 góc nhọn. ⇒ Đáp án D sai.
Chọn đáp án C.
Bài 2: Một hình thang có một cặp góc đối là 1250 và 750, cặp góc đối còn lại của hình thang đó là ?
A. 1050,550 B. 1050,450
C. 1150,550 D. 1150,650
Lời giải:
Tổng bốn góc của hình thang bằng 3600.
Theo giả thiết ta có một cặp góc đối là 1250 và 750
⇒ Tổng số đo góc của cặp góc đối còn lại là 1600.
Xét đáp án ta có cặp 1050,550 thỏa mãn.
Chọn đáp án A.
Bài 3: Hình thang ABCD có Cˆ + Dˆ = 1500. Khi đó Aˆ + Bˆ = ?
A. 2200 B. 2100
C. 2000 D. 1900
Lời giải:
Tổng bốn góc của hình thang bằng 3600.
Khi đó ta có: Aˆ + Bˆ + Cˆ + Dˆ = 3600 ⇒ Aˆ + Bˆ = 3600 - ( Cˆ + Dˆ )
⇒ Aˆ + Bˆ = 3600 - 1500 = 2100.
Chọn đáp án B.
Bài 4: Cho hình thang ABCD trong đó có Aˆ = 1200, Bˆ = 600, Dˆ = 1350 thì số đo của góc Cˆ = ?
A. 550 B. 450
C. 500 D. 600
Lời giải:
Tổng bốn góc của hình thang bằng 3600.
Khi đó ta có: Aˆ + Bˆ + Cˆ + Dˆ = 3600 ⇒ Cˆ = 3600 - ( Aˆ + Bˆ + Dˆ )
⇒ Cˆ = 3600 - ( 1200 + 600 + 1350 ) = 450.
Chọn đáp án B.
Bài 5: Cho hình thang ABCD có AB // CD. Biết Aˆ = 100o, tính Dˆ
A. 80o B. 100o
C. 120o D. 50o
Lời giải:
Chọn đáp án A
Bài 6: Cho hình thang ABCD có AB // CD và Aˆ = 120o, Bˆ = 120o. Tính Cˆ, Dˆ
Lời giải:
Chọn đáp án A
Bài 7: Cho hình thang vuông ABCD vuông tại A và D. Biết AD = 3 cm và CD = 4cm. Tính AC?
A. 3cm B. 4cm
C. 3,5cm D. 5cm
Lời giải:
Do tứ giác ABCD là hình thang vuông nên Dˆ = 90o
Suy ra, tam giác ADC là tam giác vuông tại D.
Áp dụng đinh lí Py ta go vào tam giác vuông ACD ta có:
AC2 = AD2 + DC2 = 322 + 42 = 25
Suy ra: AC = 5cm
Chọn đáp án D
Bài 8: Cho tứ giác lồi ABCD có AB // CD và AD = 6cm; DC = 8cm và AC = 10cm. Tìm khẳng định sai ?
A. Tam giác ADC vuông tại D.
B. Tứ giác ABCD là hình thang
C. Tứ giác ABCD là hình thang vuông có Dˆ = 90o
D. Tứ giác ABCD là hình thang vuông có Bˆ = 90o
Lời giải:
Tứ giác ABCD có AB // CD nên tứ giác ABCD là hình thang có 2 đáy là AB và CD.
Xét tam giác ACD có: AD2 + CD2 = AC2 (62 + 82 = 102 = 100)
Suy ra: tam giác ADC là tam giác vuông tại D.
Do đó: Dˆ = 90o
Suy ra: Tứ giác ABCD là hình thang vuông có Dˆ = 90o
Vậy khẳng định D sai
Chọn đáp án D
Bài 9: Cho hình thang ABCD có AB // CD và Aˆ = 2Dˆ. Tính góc A?
A. 60o B. 120o
C. 90o D. 80o
Lời giải:
Chọn đáp án B
Bài 10: Cho hình thang ABCD có AB // CD và Cˆ - Bˆ = 30o . Tính góc C?
A. 105o B. 90o
C. 75o D. 60o
Lời giải:
Chọn đáp án A
Bài 11: Cho hình thang ABCD có = 900, DC = BC = 2.AB, DC = 4cm. Tính góc ABC của hình thang.
A. 1100
B. 1500
C. 1200
D. 1350
Lời giải
Từ B kẻ BE vuông góc với CD tại E.
Tứ giác ABED là hình thang có hai cạnh bên AD // BE nên AD = BE, AB = DE.
Mặt khác, DC = BC = 2AB nên DC = 2ED, do đó E là trung điểm của DC.
Xét ΔBDE và ΔBCE có = 900; DE = EC; BE cạnh chung nên ΔBED = ΔBEC (c – g – c)
Suy ra BD = BC mà BC = DC (gt) ⇒ BD = BC = CD nên ΔBCD đều.
Xét ΔBCD đều có BE là đường cao cũng là đường phân giác nên
Đáp án cần chọn là: C
Bài 12: Cho tam giác ABC cân tại A. Gọi D, E theo thứ tự thuộc các cạnh bên AB, AC sao cho AD = AE.
Tứ giác BDEC là hình gì?
A. Hình thang
B. Hình thang vuông
C. Hình thang cân
D. Cả A, B, C đều sai
Lời giải
Tam giác ADE có AD = AE (gt) nen tam giác ADE cân tại A.
Suy ra
Tam giác ABC cân tại A (gt) nên
Từ (1) và (2) suy ra
Mà 2 góc là hai góc ở vị trí đồng vị nên suy ra DE // BC
Tứ giác BDEC có DE // BC nên tứ giác BDEC là hình thang
Lại có (vì tam giác ABC cân tại A) nên BDEC là hình thang cân
Đáp án cần chọn là: C
Bài 13: Cho tam giác ABC cân tại A. Gọi D, E theo thứ tự thuộc các cạnh bên AB, AC sao cho DE // BC.
Chọn đáp án đúng nhất. Tứ giác BDEC là hình gì?
A. Hình thang
B. Hình thang vuông
C. Hình thang cân
D. Cả A, B, C đều sai
Lời giải
Tứ giác BDEC có DE // BC nên tứ giác BDEC là hình thang.
Lại có (vì tam giác ABC cân tại A) nên BDEC là hình thang cân
Đáp án cần chọn là: C
Bài 14: Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB, AC lần lượt tại D và E.
1. Chọn khẳng định đúng nhất?
A. Tứ giác BDIC là hình thang
B. Tứ giác BIEC là hình thang
C. Tứ giác BDEC là hình thang
D. Cả A, B, C đều đúng
Lời giải
Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.
Tương tự:
Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.
Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.
Đáp án cần chọn là: D
2. Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB, AC lần lượt tại D và E.
Chọn khẳng định đúng.
A. DE > BD + CE
B. DE = BD + CE
C. DE < BD + CE
D. BC = BD + CE
Lời giải
Suy ra tam giác EIC cân đỉnh E
Do đó EI = EC (2)
Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE
⇒ DE = BD + CE
Đáp án cần chọn là: B
Bài 15: Cho hình thang cân MNPQ (MN // PQ) có góc = 450 và hai đáy có độ dài 12cm, 40cm. Diện tích của hình thang cân là:
A. 728 cm2
B. 346 cm2
C. 364 cm2
D. 362 cm2
Lời giải
Kẻ MH ⊥ QP; NK ⊥ QP tại H, K ⇒ MH // NK
Tứ giác MNHK có MN // HK nên MNHK là hình thang, lại có MH // NK
⇒ MN = HK; MH = NK
(Vì hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau và hai cạnh đáy bằng nhau)
Lại có
MQ = NP (vì MNPQ là hình thang cân) suy ra ΔMQH = ΔNKP (ch – cgv)
Mà HK = MN = 12 cm nên QH = KP = = 14 cm
Mà = 450 ⇒ ΔMHQ vuông cân tại H ⇒ MH = QH = 14 cm
Diện tích hình thang cân MNPQ là
SMNPQ = = 364 cm2
Đáp án cần chọn là: C
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Lý thuyết Hình thang
- Lý thuyết Hình thang cân
- Bài tập Hình thang cân
- Lý thuyết Đường trung bình của tam giác, của hình thang
- Bài tập Đường trung bình của tam giác, của hình thang
- Lý thuyết Dựng hình bằng thước và compa. Dựng hình thang
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều