Lý thuyết Đối xứng tâm lớp 8 (hay, chi tiết)

Bài viết Lý thuyết Đối xứng tâm lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Đối xứng tâm.

Lý thuyết Đối xứng tâm

Bài giảng: Bài 8: Đối xứng tâm - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

1. Hai điểm đối xứng qua một điểm

Định nghĩa: Hai điểm gọi là đối xứng với nhau qua điểm I nếu I là trung điểm của đoạn thẳng nối hai điểm đó.

Lý thuyết Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Hai điểm M và M' gọi là hai điểm đối xứng với nhau qua điểm I.

2. Hai hình đối xứng qua một điểm

Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm I nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm I và ngược lại.

Lý thuyết Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Lý thuyết Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Điểm I gọi là tâm đối xứng của hai hình đó.

3. Hình có tâm đối xứng

Định nghĩa: Điểm I gọi là tâm đối xứng qua hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm I cũng thuộc hình H.

Định lí: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Lý thuyết Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Ví dụ: Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua A, F là điểm đối xứng với D qua C. Chứng minh:

a, AC // EF

b, Điểm E đối xứng với điểm F qua điểm B.

Lời giải:

Lý thuyết Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

E là điểm đối xứng với D qua A ⇒ A là trung điểm của DE.

F là điểm đối xứng với D qua C ⇒ C là trung điểm của DF.

a) Xét Δ DEF cóLý thuyết Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ AC là đường trung bình của Δ DEF.

⇒ AC // EF

b) AC là đường trung bình của tam giác Δ DEF

⇒ AC = 1/2EF

+ ABCD là hình bình hànhLý thuyết Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Mà DC = CF ⇒ AB = 1/2DF.

⇒ AB là đường trung bình của Δ DEF

Do đó B là trung điểm của EF hay E đối xứng với F qua B.

Bài 1: Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, F là điểm đối xứng với D qua C. Chứng minh rằng E đối xứng với F qua B.

Lời giải:

Bài tập Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Theo giả thiết ta có:

+ A là trung điểm của DE thì AD = AE       ( 1 )

+ C là trung điểm của DF thì CD = CF       ( 2 )

Ta có ABCD là hình bình hành nên AD//BC

⇒ AE//BC       ( 3 ) và AD = BC       ( 4 )

Từ ( 1 ), ( 4 ) ⇒ AE = BC       ( 5 )

Từ ( 3 ) và ( 5 ), tứ giác ACBE có cặp cạnh đối song song và bằng nhau nên là hình bình hành.

Áp dụng tính chất và định nghĩa về hình bình hành ACBE ta được Bài tập Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Chứng minh tương tự, tứ giác ACBF là hình bình hành

Ta được:Bài tập Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Từ ( 6 ), ( 7 ) ⇒ E, B, F thẳng hàng và BE = BF do đó B là trung điểm của EF hay E đối xứng với F qua B.

Bài 2: Cho góc vuông xOy, điểm A nằm trong góc đó. Gọi B là điểm đối xứng với A qua Ox, C là điểm đối xứng với A qua Oy. Chứng minh B đối xứng với C qua O.

Lời giải:

Bài tập Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Vẽ AH ⊥ Ox, AK ⊥ Oy

Vẽ hai điểm B, C sao cho H, K lần lượt là trung điểm của AB, AC thì B là điểm đối xứng với A qua Ox, C là điểm đối xứng với A qua Oy.

Vì O ∈ Ox, O ∈ Oy nên O đối xứng với O qua Ox, Oy.

Áp dụng tính chất của phép đối xứng ta được

Bài tập Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

BOCˆ = {180^0}.       (2)

Từ ( 1 ), ( 2 ) suy ra O là trung điểm của BC hay B đối xứng với C qua O.

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Giải bài tập lớp 8 sách mới các môn học