Lý thuyết Đối xứng tâm lớp 8 (hay, chi tiết)
Bài viết Lý thuyết Đối xứng tâm lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Đối xứng tâm.
Lý thuyết Đối xứng tâm
Bài giảng: Bài 8: Đối xứng tâm - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
1. Hai điểm đối xứng qua một điểm
Định nghĩa: Hai điểm gọi là đối xứng với nhau qua điểm I nếu I là trung điểm của đoạn thẳng nối hai điểm đó.
Hai điểm M và M' gọi là hai điểm đối xứng với nhau qua điểm I.
2. Hai hình đối xứng qua một điểm
Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm I nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm I và ngược lại.
Điểm I gọi là tâm đối xứng của hai hình đó.
3. Hình có tâm đối xứng
Định nghĩa: Điểm I gọi là tâm đối xứng qua hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm I cũng thuộc hình H.
Định lí: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.
Ví dụ: Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua A, F là điểm đối xứng với D qua C. Chứng minh:
a, AC // EF
b, Điểm E đối xứng với điểm F qua điểm B.
Lời giải:
E là điểm đối xứng với D qua A ⇒ A là trung điểm của DE.
F là điểm đối xứng với D qua C ⇒ C là trung điểm của DF.
a) Xét Δ DEF có
⇒ AC là đường trung bình của Δ DEF.
⇒ AC // EF
b) AC là đường trung bình của tam giác Δ DEF
⇒ AC = 1/2EF
+ ABCD là hình bình hành
Mà DC = CF ⇒ AB = 1/2DF.
⇒ AB là đường trung bình của Δ DEF
Do đó B là trung điểm của EF hay E đối xứng với F qua B.
Bài 1: Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, F là điểm đối xứng với D qua C. Chứng minh rằng E đối xứng với F qua B.
Lời giải:
Theo giả thiết ta có:
+ A là trung điểm của DE thì AD = AE ( 1 )
+ C là trung điểm của DF thì CD = CF ( 2 )
Ta có ABCD là hình bình hành nên AD//BC
⇒ AE//BC ( 3 ) và AD = BC ( 4 )
Từ ( 1 ), ( 4 ) ⇒ AE = BC ( 5 )
Từ ( 3 ) và ( 5 ), tứ giác ACBE có cặp cạnh đối song song và bằng nhau nên là hình bình hành.
Áp dụng tính chất và định nghĩa về hình bình hành ACBE ta được
Chứng minh tương tự, tứ giác ACBF là hình bình hành
Ta được:
Từ ( 6 ), ( 7 ) ⇒ E, B, F thẳng hàng và BE = BF do đó B là trung điểm của EF hay E đối xứng với F qua B.
Bài 2: Cho góc vuông xOy, điểm A nằm trong góc đó. Gọi B là điểm đối xứng với A qua Ox, C là điểm đối xứng với A qua Oy. Chứng minh B đối xứng với C qua O.
Lời giải:
Vẽ AH ⊥ Ox, AK ⊥ Oy
Vẽ hai điểm B, C sao cho H, K lần lượt là trung điểm của AB, AC thì B là điểm đối xứng với A qua Ox, C là điểm đối xứng với A qua Oy.
Vì O ∈ Ox, O ∈ Oy nên O đối xứng với O qua Ox, Oy.
Áp dụng tính chất của phép đối xứng ta được
Và
⇒ BOCˆ = {180^0}. (2)
Từ ( 1 ), ( 2 ) suy ra O là trung điểm của BC hay B đối xứng với C qua O.
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Bài tập Đối xứng tâm
- Lý thuyết Hình chữ nhật
- Bài tập Hình chữ nhật
- Lý thuyết Đường thẳng song song với một đường thẳng cho trước
- Bài tập Đường thẳng song song với một đường thẳng cho trước
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều