Lý thuyết Số phần tử của một tập hợp. Tập hợp con lớp 6 (hay, chi tiết)
Bài viết Lý thuyết Số phần tử của một tập hợp. Tập hợp con lớp 6 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Số phần tử của một tập hợp. Tập hợp con.
Lý thuyết Số phần tử của một tập hợp. Tập hợp con lớp 6 (hay, chi tiết)
1. Số phần tử của một tập hợp
Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào.
Tập hợp không có phần tử được gọi là tập hợp rỗng
Tập hợp rỗng được kí hiệu là ∅.
Ví dụ:
A = {0}
B = {x, y}
C = {x ∈ ℕ | x ≤ 9}
Ta nói: Tập hợp A có một phần tử, tập hợp B có hai phần tử, tập hợp C gồm các số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 nên tập hợp C gồm 10 phần tử.
2. Tập hợp con
Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B.
Kí hiệu: A ⊂ B hoặc B ⊃ A và đọc là: A là tập hợp con của tập hợp B, hoặc A được chứa trong B hoặc B chứa A.
Ví dụ: Tập hợp A là các học sinh nữ trong một lớp là tập con của tập hợp B các học sinh trong lớp đó, kí hiệu A ⊂ B.
Chú ý:
+ Nếu A ⊂ B và B ⊂ A thì ta nói A và B là hai tập hợp bằng nhau, kí hiệu là A = B.
+ Mỗi tập hợp đều là tập hợp con của chính nó. Quy ước: Tập hợp rỗng là tập hợp con của mọi tập hợp
+ Cách tìm số tập hợp con của một tập hợp là: Nếu A có n phần tử thì số tập hợp con của tập hợp A là 2n.
+ Giao của hai tập hợp kí hiệu là ∩ là một tập hợp gồm các phần tử chung của hai tập hợp đó.
Ví dụ:
+ Ta có: A = {0; 1; 2; 3} và B = {0; 1; 2; 3; 4; 5; 6}, khi đó A ⊂ B.
+ Ta có: A = {0; 1; 2; 5; 6} và B = {0; 2; 4; 5; 8}, khi đó A ∩ B = {0; 2; 5} .
+ Tập hợp A có 5 phần tử, khi đó tập hợp A có 25 tập hợp con.
Câu 1: Số phần tử của tập hợp các số tự nhiên lẻ lớn hơn 10 và nhỏ hơn 50 là?
Lời giải:
Các số tự nhiên lẻ lớn hơn 10 và nhỏ hơn 50 là 11; 13; 15; 17; ....; 49
Nên có (49 - 11) : 2 + 1 = 20 số tự nhiên lẻ lớn hơn 10 và nhỏ hơn 50.
Vậy có 20 phần tử
Câu 2: Cho tập hợp E = {a ∈ N|5 < a ≤ 10} và tập hợp F = {8; 9; 10; 11; 12}. Có bao nhiêu tập hợp con gồm hai phần tử vừa thuộc tập hợp E vừa thuộc tập hợp F.
Lời giải:
Ta có tập hợp E là E = {6; 7; 8; 9; 10}
Khi đó ta có: E ∩ F = {8; 9; 10}
Vậy các tập hợp con có 2 phần tử vừa thuộc tập hợp E vừa thuộc tập hợp F là {8; 9}; {8; 10}; {9; 10}
Do đó có 3 tập hợp thỏa mãn yêu cầu bài.
Câu 3: Cho 4 chữ số a, b, c, d đôi một khác nhau và khác 0. Tập hợp các số tự nhiên có 4 chữ số gồm cả 4 chữ số a, b, c, d có bao nhiêu phần tử?
Lời giải:
TH1: Số đầu tiên là a. Khi đó, ba số tiếp theo có thể là: bcd, bdc, cbd, cdb, dbc, dcb
Vậy có 6 số tự nhiên có bốn chữ số bắt đầu bằng a.
Tương tự, ta cũng có số các số tự nhiên có bốn chữ số bắt đầu bằng b, c, d là 6
Vậy số các số tự nhiên có 4 chữ số gồm cả chữ số a, b, c, d là 6.4 = 24 (số)
Vậy tập hợp có 24 phần tử
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 6 có đáp án chi tiết hay khác:
- Lý thuyết Ghi số tự nhiên
- Bài tập Ghi số tự nhiên
- Bài tập Số phần tử của một tập hợp. Tập hợp con
- Lý thuyết Phép cộng và phép nhân
- Bài tập Phép cộng và phép nhân
Xem thêm các loạt bài Để học tốt Toán lớp 6 hay khác:
- Giải sgk Tiếng Anh 6 Global Success
- Giải sgk Tiếng Anh 6 Friends plus
- Giải sgk Tiếng Anh 6 Smart World
- Giải sgk Tiếng Anh 6 Explore English
- Lớp 6 - Kết nối tri thức
- Soạn Văn 6 (hay nhất) - KNTT
- Soạn Văn 6 (ngắn nhất) - KNTT
- Giải sgk Toán 6 - KNTT
- Giải sgk Khoa học tự nhiên 6 - KNTT
- Giải sgk Lịch Sử 6 - KNTT
- Giải sgk Địa Lí 6 - KNTT
- Giải sgk Giáo dục công dân 6 - KNTT
- Giải sgk Hoạt động trải nghiệm 6 - KNTT
- Giải sgk Tin học 6 - KNTT
- Giải sgk Công nghệ 6 - KNTT
- Giải sgk Âm nhạc 6 - KNTT
- Lớp 6 - Chân trời sáng tạo
- Soạn Văn 6 (hay nhất) - CTST
- Soạn Văn 6 (ngắn nhất) - CTST
- Giải sgk Toán 6 - CTST
- Giải sgk Khoa học tự nhiên 6 - CTST
- Giải sgk Lịch Sử 6 - CTST
- Giải sgk Địa Lí 6 - CTST
- Giải sgk Giáo dục công dân 6 - CTST
- Giải sgk Công nghệ 6 - CTST
- Giải sgk Hoạt động trải nghiệm 6 - CTST
- Giải sgk Âm nhạc 6 - CTST
- Lớp 6 - Cánh diều
- Soạn Văn 6 Cánh diều (hay nhất)
- Soạn Văn 6 Cánh diều (ngắn nhất)
- Giải sgk Toán 6 - Cánh diều
- Giải sgk Khoa học tự nhiên 6 - Cánh diều
- Giải sgk Lịch Sử 6 - Cánh diều
- Giải sgk Địa Lí 6 - Cánh diều
- Giải sgk Giáo dục công dân 6 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 6 - Cánh diều
- Giải sgk Tin học 6 - Cánh diều
- Giải sgk Công nghệ 6 - Cánh diều
- Giải sgk Âm nhạc 6 - Cánh diều