Giải Toán 9 trang 10 Tập 1 Kết nối tri thức
Với Giải Toán 9 trang 10 Tập 1 trong Bài 1: Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn Toán lớp 9 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 10.
Bài 1.1 trang 10 Toán 9 Tập 1: Phương trình nào sau đây là phương trình bậc nhất hai ẩn? Vì sao?
a) 5x – 8y = 0;
b) 4x + 0y = –2;
c) 0x + 0y = 1;
d) 0x – 3y = 9.
Lời giải:
a) Phương trình 5x – 8y = 0 có dạng ax + by = c với a = 5 ≠ 0, b = –8 ≠ 0.
Do đó, phương trình 5x – 8y = 0 là phương trình bậc nhất hai ẩn.
b) Phương trình 4x + 0y = –2 có dạng ax + by = c với a = 4 ≠ 0.
Do đó, phương trình 4x + 0y = –2 là phương trình bậc nhất hai ẩn.
c) Phương trình 0x + 0y = 1 có dạng ax + by = c với a = 0, b = 0.
Do đó, phương trình 0x + 0y = 1 không phải là phương trình bậc nhất hai ẩn.
d) Phương trình 0x – 3y = 9 có dạng ax + by = c với b = –3 ≠ 0.
Do đó, phương trình 0x – 3y = 9 là phương trình bậc nhất hai ẩn.
Bài 1.2 trang 10 Toán 9 Tập 1:
a) Tìm giá trị thích hợp thay cho dấu "?" trong bảng sau rồi cho biết 6 nghiệm của phương trình 2x – y = 1:
x |
–1 |
–0,5 |
0 |
0,5 |
1 |
2 |
y = 2x – 1 |
? |
? |
? |
? |
? |
? |
b) Viết nghiệm tổng quát của phương trình đã cho.
Lời giải:
a)
• Với x = –1, ta có y = 2 . (–1) – 1 = – 2 – 1 = –3;
• Với x = –0,5, ta có y = 2 . (–0,5) – 1 = – 1 – 1 = –2;
• Với x = 0, ta có y = 2 . 0 – 1 = 0 – 1 = –1;
• Với x = 0,5, ta có y = 2 . 0,5 – 1 = 1 – 1 = 0;
• Với x = 1, ta có y = 2 . 1 – 1 = 2 – 1 = 1;
• Với x = 2, ta có y = 2 . 2 – 1 = 4 – 1 = 3.
Vậy ta có bảng sau:
x |
–1 |
–0,5 |
0 |
0,5 |
1 |
2 |
y = 2x – 1 |
–3 |
–2 |
–1 |
0 |
1 |
3 |
Vậy 6 nghiệm của phương trình đã cho là (–1; –3), (–0,5; –2), (0; –1), (0,5; 1), (1; 1), (2; 3).
b) Ta có y = 2x – 1. Với mỗi giá trị x tùy ý cho trước, ta luôn tìm được một giá trị y tương ứng.
Do đó, phương trình đã cho có vô số nghiệm. Nghiệm tổng quát của phương trình đó là: (x; 2x – 1) với x ∈ ℝ tùy ý.
Bài 1.3 trang 10 Toán 9 Tập 1: Viết nghiệm và biểu diễn hình học tất cả các nghiệm của mỗi phương trình bậc nhất hai ẩn sau:
a) 2x – y = 3;
b) 0x + 2y = –4;
c) 3x + 0y = 5.
Lời giải:
a) Xét phương trình 2x – y = 3. (1)
Ta viết (1) dưới dạng y = 2x – 3. Mỗi cặp số (x; 2x – 3) với x ∈ ℝ tùy ý, là một nghiệm của (1).
Khi đó, ta nói phương trình (1) có nghiệm (tổng quát) là: (x; 2x – 3) với x ∈ ℝ tùy ý.
Mỗi nghiệm này là tọa độ một điểm thuộc đường thẳng y = 2x – 3.
Ta xác định được hai điểm tùy ý của đường thẳng y = 2x – 3, chẳng hạn A(0; – 3), B(1; –1). Vẽ đường thẳng đi qua hai điểm A và B, ta được đường thẳng d: y = 2x – 3 như sau:
b) Xét phương trình 0x + 2y = –4 . (2)
Ta viết gọn (2) thành y = –2. Phương trình (2) có nghiệm (x; –2) với x ∈ ℝ tùy ý.
Mỗi nghiệm này là tọa độ một điểm thuộc đường thẳng song song với trục hoành và cắt trục tung tại điểm M(0; –2). Ta gọi đó là đường thẳng y = –2.
Ta biểu diễn hình học tất cả các nghiệm của phương trình y = –2 như sau:
c) Xét phương trình 3x + 0y = 5. (3)
Ta viết gọn (3) thành . Phương trình (3) có nghiệm với y ∈ ℝ tùy ý.
Mỗi nghiệm này là tọa độ một điểm thuộc đường thẳng song song với trục tung và cắt trục hoành tại điểm . Ta gọi đó là đường thẳng .
Ta biểu diễn hình học tất cả các nghiệm của phương trình như sau:
Bài 1.4 trang 10 Toán 9 Tập 1: Cho hệ phương trình
a) Hệ phương trình trên có là một hệ hai phương trình bậc nhất hai ẩn không? Vì sao?
b) Cặp số (–3; 4) có là một nghiệm của hệ phương trình đã cho hay không? Vì sao?
Lời giải:
a) Hệ phương trình đã cho là hệ hai phương trình bậc nhất hai ẩn vì cả hai phương trình của hệ đã cho đều là phương trình bậc nhất hai ẩn.
b) Thay x = –3; y = 4 vào từng phương trình của hệ phương trình đã cho, ta có:
• 2x = 2 . (−3) = −6 nên (–3; 4) là nghiệm của phương trình thứ nhất;
• 5x + 4y = 5 . (−3) + 4 . 4 = −15 + 16 = 1 nên (–3; 4) là nghiệm của phương trình thứ hai.
Do đó (–3; 4) là nghiệm chung của hai phương trình, nghĩa là (–3; 4) là một nghiệm của hệ phương trình đã cho.
Bài 1.5 trang 10 Toán 9 Tập 1: Cho các cặp số (–2; 1), (0; 2), (1; 0), (1,5; 3), (4; –3) và hai phương trình
5x + 4y = 8, (1)
3x + 5y = –3. (2)
Trong các cặp số đã cho:
a) Những cặp số nào là nghiệm của phương trình (1)?
b) Cặp số nào là nghiệm của hệ hai phương trình gồm phương trình (1) và phương trình (2)?
c) Vẽ hai đường thẳng 5x + 4y = 8 và 3x + 5y = –3 trên cùng một mặt phẳng tọa độ để minh họa kết luận ở câu b.
Lời giải:
a)
• Thay x = –2; y = 1 vào phương trình (1), ta có:
5x + 4y = 5 . (–2) + 4 . 1 = −10 + 4 = −6 ≠ 8 nên (–2; 1) không phải là nghiệm của phương trình (1).
• Thay x = 0; y = 2 vào phương trình (1), ta có:
5x + 4y = 5 . 0 + 4 . 2 = 0 + 8 = 8 nên (0; 2) là nghiệm của phương trình (1).
• Thay x = 1; y = 0 vào phương trình (1), ta có:
5x + 4y = 5 . 1 + 4 . 0 = 5 + 0 = 5 ≠ 8 nên (1; 0) không phải là nghiệm của phương trình (1).
• Thay x = 1,5; y = 3 vào phương trình (1), ta có:
5x + 4y = 5 . 1,5 + 4 . 3 = 7,5 + 12 = 19,5 ≠ 8 nên (1,5; 3) không phải là nghiệm của phương trình (1).
• Thay x = 4; y = –3 vào phương trình (1), ta có:
5x + 4y = 5 . 4 + 4 . (–3) = 20 – 12 = 8 nên (4; –3) là nghiệm của phương trình (1).
Vậy cặp số là nghiệm của phương trình (1) là (0; 2) và (4; –3).
b) Để cặp số là nghiệm của hệ hai phương trình gồm phương trình (1) và phương trình (2) thì cặp số đó phải là nghiệm của phương trình (1) và phương trình (2).
Khi đó, ta chỉ cần kiểm tra hai cặp số (0; 2) và (4; –3) có phải là nghiệm của phương trình (2) hay không.
• Thay x = 0; y = 2 vào phương trình (2), ta có:
3x + 5y = 3 . 0 + 5 . 2 = 0 + 10 = 10 ≠ –3 nên (0; 2) không phải là nghiệm của phương trình (2).
• Thay x = 4; y = –3 vào phương trình (2), ta có:
3x + 5y = 3 . 4 + 5 . (–3) = 12 – 15 = –3 nên (4; –3) là nghiệm của phương trình (2).
Ta thấy nghiệm chung của phương trình (1) và phương trình (2) là cặp số (4; –3).
Do đó, cặp số (4; –3) là nghiệm của hệ gồm phương trình (1) và phương trình (2).
c) Đường thẳng 5x + 4y = 8 đi qua điểm A(0; 2) và B(4; –3).
Đường thẳng 3x + 5y = –3 đi qua điểm B(4; –3) và C(–1; 0).
Hai đường thẳng 5x + 4y = 8 và 3x + 5y = –3 cắt nhau tại B(4; –3), tức là (4; –3) là nghiệm của hệ gồm phương trình (1) và phương trình (2).
Lời giải bài tập Toán 9 Bài 1: Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn hay khác:
Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT