Bài 9.23 trang 83 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Bài 9.23 trang 83 Toán 9 Tập 2: Người ta muốn dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa đường tròn như Hình 9.37. Tính chiều dài của đoạn thép làm khung nửa đường tròn đó.

Bài 9.23 trang 83 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Giả sử ABCD là khung cổng hình chữ nhật (AB = CD = 3 m và AD = BC = 4 m) nội tiếp nửa đường tròn (O) (hình vẽ).

Bài 9.23 trang 83 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Gọi H là trung điểm của CD.

Khi đó HB=HC=12BC=124=2 (m) và H nằm trên đường trung trực của BC.

Vì B, C cùng nằm trên nửa đường tròn (O) nên OB = OC, suy ra O nằm trên đường trung trực của BC.

Do đó OH là đường trung trực của đoạn thẳng BC, nên OH ⊥ BC.

Mà BC // AD (do ABCD là hình chữ nhật) nên OH ⊥ AD.

Xét tứ giác ABHO có OAB^=AOH^=OHB^=90° nên ABHO là hình chữ nhật.

Do đó OH = AB = 3 (m).

Xét ∆OBH vuông tại H, theo định lí Pythagore, ta có:

OB2 = OH2 + HB2 = 32 + 22 = 13.

Do đó OB=13 m.

Nửa chu vi đường tròn (O) là: π13 (m).

Vậy chiều dài của đoạn thép làm khung nửa đường tròn đó là: π13 (m).

Lời giải bài tập Toán 9 Bài 29: Tứ giác nội tiếp hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Kết nối tri thức khác