Bài 9.22 trang 83 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Bài 9.22 trang 83 Toán 9 Tập 2: Tính diện tích của một hình chữ nhật, biết rằng hình chữ nhật đó có chiều dài gấp hai lần chiều rộng và bán kính đường tròn ngoại tiếp bằng 2,5 cm.

Lời giải:

Giả sử ABCD là hình chữ nhật có AB = 2BC nội tiếp đường tròn (O) có bán kính 2,5 cm (hình vẽ).

Bài 9.22 trang 83 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì ABCD là hình chữ nhật nên nó nội tiếp đường tròn tâm O là giao điểm hai đường chéo AC, BD và bán kính bằng nửa độ dài đường chéo AC, hay AC là đường kính của đường tròn (O).

Do đó AC = 2 . 2,5 = 5 (cm).

Vì ABCD là hình chữ nhật nên ABC^=90°.

Áp dụng định lí Pythagore vào ∆ABC vuông tại B, ta có:

AC2 = AB2 + BC2

Suy ra 52 = (2BC)2 + BC2

Do đó 25 = 4BC2 + BC2

Hay 5BC2 = 25, suy ra BC2 = 5, nên BC=5 (cm).

Khi đó, AB=2BC=25 (cm).

Vậy diện tích hình chữ nhật ABCD là:

S=ABBC=255=10 (cm2).

Lời giải bài tập Toán 9 Bài 29: Tứ giác nội tiếp hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Kết nối tri thức khác