Giải Toán 9 trang 77 Tập 2 Cánh diều

Với Giải Toán 9 trang 77 Tập 2 trong Bài 2: Tứ giác nội tiếp đường tròn Toán 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 77.

Luyện tập 3 trang 77 Toán 9 Tập 2: Người ta làm một logo có dạng hình tròn, trong đó có một hình chữ nhật nội tiếp đường tròn với chiều dài và chiều rộng lần lượt là 8 cm và 6 cm. Hình chữ nhật được tô màu xanh còn phần khác của logo được tô màu đỏ. Tính diện tích phần được tô màu đỏ.

Lời giải:

Luyện tập 3 trang 77 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Giả sử hình chữ nhật ABCD nội tiếp đường tròn (O) có AB = CD = 6 cm và AD = BC = 8 cm.

Khi đó đường chéo AC là đường kính của đường tròn (O).

Xét ∆ADC vuông tại D, theo định lí Pythagore, ta có:

AC2 = AD2 + DC2 = 82 + 62 = 100.

Suy ra AC = 10 cm.

Do đó bán kính của đường tròn (O) là R=AC2=102=5 (cm).

Diện tích hình tròn bán kính R = 5 cm là:

S1 = πR2 = π.52 = 25π (cm2).

Diện tích hình chữ nhật ABCD là:

S2 = AD.DC = 8.6 = 48 (cm2).

Diện tích phần được tô màu đỏ là:

S = S1 – S2 = 25π – 48 (cm2) ≈ 30,5 (cm2) với π ≈ 3,14.

Hoạt động 4 trang 77 Toán 9 Tập 2: Cho hình vuông ABCD, AC cắt BD tại điểm O (Hình 20).

Hoạt động 4 trang 77 Toán 9 Tập 2 Cánh diều | Giải Toán 9

a) Mỗi đường chéo của hình vuông ABCD có phải là đường kính của đường tròn ngoại tiếp hình vuông đó hay không?

b) Cho biết AB = a, tính OA theo a.

Lời giải:

a) Vì hình vuông cũng là hình chữ nhật nên mỗi đường chéo AC và BD của hình vuông ABCD cũng đều là đường kính của đường tròn ngoại tiếp hình vuông đó.

b) Vì ABCD là hình vuông nên AC ⊥ BD tại trung điểm O của mỗi đường và AC = BD.

Do đó OA=OC=12AC=12BD=OB=OD.

Xét ∆OAB vuông tại O, theo định lí Pythagore, ta có:

AB2 = OA2 + OB2

Suy ra a2 = OA2 + OA2

Hay 2OA2 = a2 nên OA2=a22.

Do đó OA=a2=a22.

Luyện tập 4 trang 77 Toán 9 Tập 2: Tính tỉ số giữa chu vi của một hình vuông và chu vi của đường tròn ngoại tiếp hình vuông đó.

Lời giải:

Luyện tập 4 trang 77 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Giả sử hình vuông ABCD có cạnh bằng a và có đường tròn ngoại tiếp là đường tròn (O).

Khi đó bán kính của đường tròn (O) là R=a22.

Chu vi của đường tròn (O) là: C1=2πR=2πa22=πa2.

Chu vi của hình vuông ABCD là: C2 = 4a.

Tỉ số giữa chu vi của hình vuông ABCD và chu vi của đường tròn (O) ngoại tiếp hình vuông đó là: C2C1=4aπa2=22π.

Lời giải bài tập Toán 9 Bài 2: Tứ giác nội tiếp đường tròn hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác