Giải Toán 9 trang 59 Tập 2 Cánh diều

Với Giải Toán 9 trang 59 Tập 2 trong Bài 2: Phương trình bậc hai một ẩn Toán 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 59.

Luyện tập 6 trang 59 Toán 9 Tập 2: Sử dụng máy tính cầm tay tìm nghiệm của phương trình bậc hai một ẩn (làm tròn kết quả đến hàng phần mười):

2x24x3=0.

Lời giải:

Sử dụng loại máy tính phù hợp, ấn liên tiếp các phím:

Luyện tập 6 trang 59 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Ta thấy trên màn hình hiện ra (kết quả gần đúng) x­1 = 3,209971027.

Ấn tiếp phím Luyện tập 6 trang 59 Toán 9 Tập 2 Cánh diều | Giải Toán 9 ta thấy trên màn hình hiện ra (kết quả gần đúng) x2 = –0,3815439022.

Vậy nghiệm của phương trình đã cho là x1 ≈ 3,2; x2 ≈ –0,4.

Bài 1 trang 59 Toán 9 Tập 2: Trong các phương trình sau, phương trình nào là phương trình bậc hai một ẩn? Đối với những phương trình bậc hai một ẩn đó, xác định hệ số a của x2, hệ số b của x, hệ số tự do c.

a) 0,5x25x+3=0.

b) 0x2 – 0,25x + 6 = 0.

c) x2+5x=0.

Lời giải:

a) Phương trình 0,5x25x+3=0 là phương trình bậc hai ẩn x, có a = 0,5; b = –5; c = 3.

b) Phương trình 0x2 – 0,25x + 6 = 0 không phải là phương trình bậc hai một ẩn vì a = 0.

c) Phương trình x2+5x=0 là phương trình bậc hai ẩn x, có a = –1; b = 5; c = 0.

Bài 2 trang 59 Toán 9 Tập 2: Chứng minh rằng: Nếu ac < 0 thì phương trình ax2 + bx + c (a ≠ 0) có hai nghiệm phân biệt. Điều ngược lại có đúng hay không? Vì sao?

Lời giải:

⦁ Xét phương trình ax2 + bx + c (a ≠ 0) có ∆ = b2 – 4ac.

Theo bài, nếu ac < 0 thì – 4ac > 0.

Mà b2 ≥ 0 nên b2 – 4ac > 0, hay ∆ > 0.

Khi đó, phương trình có hai nghiệm phân biệt.

⦁ Xét phương trình ax2 + bx + c (a ≠ 0) có ∆ = b2 – 4ac.

Nếu phương trình có hai nghiệm phân biệt thì ∆ > 0, hay b2 – 4ac > 0, suy ra b2 > 4ac.

Ta thấy có hai trường hợp xảy ra:

Trường hợp 1: b2 > 4ac > 0 thì khi đó ta có ac > 0.

Trường hợp 2: 4ac < 0 thì khi đó ta có ac < 0.

Vậy khẳng định chiều ngược lại là không đúng.

Bài 3 trang 59 Toán 9 Tập 2: Giải các phương trình:

a) x2 – x – 5 = 0;

b) 2x2 – 0,5x + 0,03 = 0;

c) –16x2 + 8x – 1 = 0;

d) –2x2 + 5x – 4 = 0;

e) 15x25=0;

g) 3x22x=0.

Lời giải:

a) x2 – x – 5 = 0

Phương trình có các hệ số a = 1, b = –1, c = –5,

∆ = (–1)2 – 4.1.(–5) = 21 > 0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=1+2121=1+212;x2=12121=1212.

b) 2x2 – 0,5x + 0,03 = 0

Phương trình có các hệ số a = 2; b = –0,5; c = 0,03;

∆ = (–0,5)2 – 4.2.0,03 = 0,01 > 0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=0,5+0,0122=0,5+0,14=0,64=0,15;

x2=0,50,0122=0,50,14=0,44=0,1.

c) –16x2 + 8x – 1 = 0

Phương trình có các hệ số a = –16, b = 8, c = –1. Do b = 8 nên b’ = 4.

Ta có: ∆’ = 42 – (–16).(–1) = 0.

Do ∆’ = 0 nên phương trình có nghiệm kép x1=x2=416=14.

d) –2x2 + 5x – 4 = 0

Phương trình có các hệ số a = –2, b = 5, c = –4,

∆ = 52 – 4.(–2).(–4) = –7 < 0.

Do ∆ < 0 nên phương trình đã cho vô nghiệm.

e) 15x25=0

Phương trình có các hệ số a = 15, b = 0, c = –5. Do b = 0 nên b’ = 0.

Ta có: Δ'=02155=1>0.

Do ∆’ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=0+115=5;x2=0115=5.

g) 3x22x=0

Phương trình có các hệ số a = 3, b = 2, c = 0,

Δ=22430=2>0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=2+223=226=23;

x2=2223=06=0.

Lời giải bài tập Toán 9 Bài 2: Phương trình bậc hai một ẩn hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác