s

Giải Toán 8 trang 71 Tập 2 Chân trời sáng tạo

Với Giải Toán 8 trang 71 Tập 2 trong Bài 2: Các trường hợp đồng dạng của hai tam giác Toán 8 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 71.

Bài 4 trang 71 Toán 8 Tập 2: Xét xem cặp tam giác nào trong các Hình 16a, 16b đồng dạng?

Bài 4 trang 71 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét ΔDEFΔABC có:

DEAB=DFAC=12

D^=A^=120o

Vậy ΔDEF ᔕ ΔABC (c.g.c).

Bài 5 trang 71 Toán 8 Tập 2: Trong Hình 17, cho biết DE = 6 cm, EF= 7,8 cm, NP = 13 cm, NM = 10 cm, E^=N^P^=42o. Tính F^.

Bài 5 trang 71 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét ΔDEFΔMNP ta có:

DEMN=EFNP=35

E^=N^ (gt)

Do đó ΔDEF ᔕ ΔMNP (c.g.c)

Suy ra F^=P^=42o  (hai góc tương ứng).

Vậy  F^=42o.

Bài 6 trang 71 Toán 8 Tập 2: a) Cho tam giác ABC có AB = 12 cm, AC = 15 cm, BC = 18 cm. Trên cạnh AB, lấy điểm E sao cho AE = 10 cm. Trên cạnh AC, lấy điểm F sao cho AF = 8 cm (Hình 18a). Tính độ dài đoạn thẳng EF.

b) Trong Hình 18b, cho biết FD = FC, BC = 9 dm, DE = 12 dm, AC = 15 dm, MD = 20 dm. Chứng minh rằng ΔABC ᔕ ΔMED.

Bài 6 trang 71 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Xét ΔAFEΔABC có:

AFAB=AEAC=23

 A^ chung

Do đó ΔAFE ᔕ ΔABC (c.g.c)

Suy ra AFAB=AEAC=EFBC (các cặp cạnh tương ứng).

Khi đó 812=1015=EF18=23  suy ra EF=18.23=12  (cm).

Vậy EF = 12 cm.

b) Xét ΔABCΔMED ta có:

 BCED=ACMD=34

 C^=D^ (tam giác FDC cân)

Vậy ΔABC ᔕ ΔMED (c.g.c).

Bài 7 trang 71 Toán 8 Tập 2: Trong Hình 19, cho biết MN // BC, MB // AC.

Bài 7 trang 71 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

a) Chứng minh ΔBNM ᔕ ΔABC.

b) Tính C^.

Lời giải:

a) Xét ΔBNM và ΔABC ta có:

MN // BC nên MNB^=ABC^ (hai góc so le trong)

MB // AC nên MBN^=BAC^ (hai góc so le trong)

Vậy ΔBNM ᔕ ΔABC (g.g).

b) Do ΔBNM ᔕ ΔABC (cmt) nên C^=M^=48° .

Lời giải bài tập Toán 8 Bài 2: Các trường hợp đồng dạng của hai tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Chân trời sáng tạo khác