Giải Toán 8 trang 73 Tập 2 Cánh diều

Với Giải Toán 8 trang 73 Tập 2 trong Bài 5: Tam giác đồng dạng Toán 8 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 73.

Bài 1 trang 73 Toán 8 Tập 2: Cho ∆ABC ᔕ ∆MNP và A^=45°,B^=60°.Tính các góc C, M, N, P.

Lời giải:

Bài 1 trang 73 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Xét ∆ABC ta có A^+B^+C^=180° (tổng ba góc của một tam giác)

Suy ra C^=180°A^B^=180°45°60°=75°.

Vì ∆ABC ᔕ ∆MNP nên

A^=M^=45°;B^=N^=60°;C^=P^=75°.

Vậy C^=P^=75°;  M^=45°;  N^=60°.

Bài 2 trang 73 Toán 8 Tập 2: Cho ∆ABC ᔕ ∆MNP và AB = 4, BC = 6, CA = 5, MN = 5. Tính độ dài các cạnh NP, PM.

Lời giải:

Vì ∆ABC ᔕ∆MNPnên ABMN=BCNP=CAPM

Mà AB = 4 và MN = 5 nên BCNP=CAPM=ABMN=45

Do vậy: NP=54BC=546=152;   PM=54CA=545=254.

Vậy NP=152;  PM=254.

Bài 3 trang 73 Toán 8 Tập 2: Ba vị trí A, B, C trong thực tiễn lần lượt được mô tả bởi ba đỉnh của tam giác A’B’C’ trên bản vẽ. Biết tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số 11  000  000 và A’B’ = 4 cm, B’C’ = 5 cm, C’A’ = 6 cm. Tính khoảng cách giữa hai vị trí A và B, B và C, C và A trong thực tiễn (theo đơn vị kilômét).

Lời giải:

Đổi đơn vị:

A’B’ = 4 cm = 0,00004 km;

B’C’ = 5 cm = 0,00005 km;

C’A’ = 6 cm = 0,00006 km.

Vì ∆A’B’C’ đồng dạng với ∆ABCtheo tỉ số 11  000  000 nên ta có:

A'B'AB=A'C'AC=B'C'BC=11  000  000

Do vậy khoảng cách giữa hai vị trí A và B, B và C, C và A trong thực tiễn là:

AB = 0,00004 . 1 000 000 = 40 (km);

BC = 0,00005 . 1 000 000 = 50 (km);

AB = 0,00006 . 1 000 000 = 60 (km).

Bài 4 trang 73 Toán 8 Tập 2: Trong Hình 54, độ rộng của khúc sông được tính bằng khoảng cách giữa hai vị trí C, D. Giả sử chọn được các vị trí A, B, E sao cho ∆ABE ᔕ ∆ACD và đo được AB = 20 m, AC = 50 m, BE = 8 m. Tính độ rộng của khúc sông đó.

Bài 4 trang 73 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Vì ∆ABE ᔕ ∆ACD nên ABAC=BECD=EADA

Mà AB = 20m, AC = 50 m nên ta có BECD=EADA=ABAC=2050=25

Do vậy độ rộng của khúc sông đó là CD là: CD=52BE=528=20(m).

Bài 5 trang 73 Toán 8 Tập 2: Cho tam giác ABC (Hình 55), các điểm M, N thuộc cạnh AB thoả mãn AM = MN = NB, các điểm P, Q thuộc cạnh AC thoả mãn AP = PQ = QC. Tam giác AMP đồng dạng với những tam giác nào?

Bài 5 trang 73 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 5 trang 73 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Vì AM = MN; AP = PQ nên M, P lần lượt là trung điểm của AN, AQ.

Xét ∆ANQ có M, P lần lượt là trung điểm của AN, AQ nên MP là đường trung bình của ∆ANQ.

Suy ra MP // NQ nên ∆AMP ᔕ ∆ANQ.

Do AM = MN = NB; AP = PQ = QC nên ta có AMAB=APAC=13

Xét ∆ABC có AMAB=APAC nên MP // BC (định lí Pythagore đảo)

Do đó ∆AMP ᔕ ∆ABC.

Bài 6 trang 73 Toán 8 Tập 2: Cho hình bình hành ABCD. Một đường thẳng đi qua D lần lượt cắt đoạn thẳng BC và tia AB tại M và N sao cho điểm M nằm giữa hai điểm B và C. Chứng minh:

a) ∆NBM ᔕ ∆NAD;

b) ∆NBM ᔕ ∆DCM;

c) ∆NAD ᔕ ∆DCM.

Lời giải:

Bài 6 trang 73 Toán 8 Tập 2 Cánh diều | Giải Toán 8

a) Do ABCD là hình bình hành nên BC // AD hay BM // AD.

Do BM // AD nên ∆NBM ᔕ ∆NAD.

b) Do ABCD là hình bình hành nên AB // CD hay BN // CD.

Do BN // CD nên ∆NBM ᔕ ∆DCM.

c) Do ∆NBM ᔕ ∆NAD nên ∆NAD ᔕ ∆NBM

Mà ∆NBM ᔕ ∆DCM nên ∆NAD ᔕ ∆DCM.

Lời giải bài tập Toán 8 Bài 5: Tam giác đồng dạng hay khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Cánh diều khác