Giải Toán 8 trang 68 Tập 2 Cánh diều

Với Giải Toán 8 trang 68 Tập 2 trong Bài 4: Tính chất đường phân giác của tam giác Toán 8 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 68.

Luyện tập 3 trang 68 Toán 8 Tập 2: Cho tam giác ABC có ba đường phân giác AD, BE, CE. Chứng minh DBDCECEAFAFB=1.

Lời giải:

Luyện tập 3 trang 68 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Xét tam giác ABC với ba đường phân giác AD, BE, CF, ta có:

DBDC=ABAC;   ECEA=BCBA;   FAFB=CACB (tính chất đường phân giác)

Do đó DBDCECEAFAFB=ABACBCBACACB=ABBCCACAABBC=1.

Vậy DBDCECEAFAFB=1.

Luyện tập 4 trang 68 Toán 8 Tập 2: Cho tam giác ABC, điểm D thuộc cạnh BC sao cho DBDC=ABAC. Chứng minh AD là tia phân giác của góc BAC.

Lời giải:

Luyện tập 4 trang 68 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Từ B kẻ đường thẳng song song với AC, cắt AD tại K.

Vì BK // AC nên theo hệ quả của định lí Thalès, ta có: DBDC=BKAC

DBDC=ABAC (giả thiết) nên BKAC=ABAC, do đó BK = AB.

Khi đó tam giác ABK cân tại B nên BAK^=BKA^

Mà BK // AC nên BKA^=KAC^ (hai góc so le trong)

Suy ra BAK^=KAC^

Vậy AD là đường phân giác trong tam giác BAC.

Lời giải bài tập Toán 8 Bài 4: Tính chất đường phân giác của tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Cánh diều khác