Giải Toán 8 trang 57 Tập 2 Cánh diều
Với Giải Toán 8 trang 57 Tập 2 trong Bài 1: Định lí Thalès trong tam giác Toán 8 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 57.
Bài 1 trang 57 Toán 8 Tập 2: Cho tam giác ABC có AB = 4,5 cm; AC = 6 cm. Các điểm M, N lần lượt thuộc các cạnh AB, AC thoả mãn AM = 3 cm và MN // BC. Tính độ dài đoạn thẳng AN.
Lời giải:
Xét ∆ABC với MN // BC, ta có:
(Hệ quả của định lí Thalès)
Suy ra
Do đó
Bài 2 trang 57 Toán 8 Tập 2: Cho hình thang ABCD (AB // CD) có AB = 4 cm, CD = 6 cm. Đường thẳng d song song với hai đáy và cắt hai cạnh bên AD, BC của hình thang đó lần lượt tại M, N; cắt đường chéo AC tại P.
a) Chứng minh
b) Tính độ dài các đoạn thẳng MP, PN, MN; biết rằng MD = 2MA.
Lời giải:
a) Do d // CD, mà M, N, P ∈ d nên MP // CD, PN // CD, MN // CD
Do ABCD là hình thang nên AB // CD, do đó PN // AB
Xét ∆ADC với MP // CD, ta có (định lí Thalès) (1)
Xét ∆ABC với PN // AB, ta có (định lí Thalès) (2)
Từ (1) và (2) suy ra
b) ⦁Do MD = 2MA nên
Suy ra hay
⦁Xét ∆ADC với MP // CD, ta có (hệ quả định lí Thalès)
Suy ra Do đó
⦁ Tương tự, xét ∆ABC vớiPN // AB, ta có (hệ quả định lí Thalès)
Mà hay do đó nên
Khi đó nên
Ta có:
Bài 3 trang 57 Toán 8 Tập 2: Trong Hình 15, cho MN // AB, NP // BC. Chứng minh MP // AC.
Lời giải:
Xét ∆OAB với MN // AB, ta có (hệ quả định lí Thalès)
Xét ∆OBC với PN // BC, ta có (hệ quả định lí Thalès)
Do đó,
Trong ∆OAC có: nên MP // AC (định lí Thalès đảo).
Bài 4 trang 57 Toán 8 Tập 2: Trong Hình 16, độ dài đoạn thẳng A’C’ mô tả chiều cao của một cái cây, đoạn thẳng AC mô tả chiều cao của một cái cọc (cây và cọc cùng vuông góc với đường thẳng đi qua ba điểm A’, A, B). Giả sử AC = 2m, AB = 1,5m, A’B = 4,5 m. Tính chiều cao của cây.
Lời giải:
Ta có: AC ⊥ A’B, A’C’ ⊥ A’B nên AC // A’C’
Xét ∆A’BC’ với AC // A’C’, ta có: (hệ quả định lí Thalès)
Suy ra
Suy ra A’C’ = 3AC = 3.2 = 6 (m).
Vậy cây cao 6m.
Bài 5 trang 57 Toán 8 Tập 2: Cho đoạn thẳng AB. Hãy trình bày cách chia đoạn thẳng AB thành ba đoạn thẳng bằng nhau mà không dùng thước để đo.
Lời giải:
– Vẽ tia Ax và lấy một điểm M trên tia Ax.
– Dùng compa vẽ cung tròn tâm M, bán kính MA, cắt tia Ax tại N (khác A), ta được MN = MA.
Tương tự như vậy, khi đó ta lấy liên tiếp trên tia Ax, bắt đầu từ điểm A, ba đoạn thẳng AM, MN, NC có độ dài bằng nhau.
– Trong tam giác ABC, kẻ đường thẳng qua M song song với cạnh BC, cắt cạnh AB tại I.
Theo định lí Thalès, ta có Do đó
Dựa theo đoạn mẫu AI, ta có thể chia đoạn thẳng AB thành ba phần bằng nhau.
Lời giải bài tập Toán 8 Bài 1: Định lí Thalès trong tam giác hay khác:
Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Cánh diều
- Giải SBT Toán 8 Cánh diều
- Giải lớp 8 Cánh diều (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều