Giải Toán 7 trang 67 Tập 2 Chân trời sáng tạo
Với Giải Toán 7 trang 67 Tập 2 trong Bài 5: Đường trung trực của một đoạn thẳng Toán 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 67.
Khởi động trang 67 Toán 7 Tập 2: Cột điện MN vuông góc với thanh xà AB tại điểm nào của đoạn thẳng AB?
Lời giải:
Cột điện MN vuông góc với thanh xà AB tại điểm O của đoạn thẳng AB.
Khám phá 1 trang 67 Toán 7 Tập 2: Lấy một mảnh giấy như trong Hình 1a, gọi một mép cắt là đoạn thẳng AB. Sau đó gấp mảnh giấy sao cho điểm A trùng với điểm B (Hình 1b).
Theo em nếp gấp xy có vuông góc với đoạn AB tại trung điểm hay không? Vì sao?
Lời giải:
Ta thấy khi gấp giấy điểm A trùng với điểm B nên O là trung điểm của AB.
Ngoài ra nếp gấp vuông góc với đoạn AB.
Do đó nếp gấp xy vuông góc với đoạn AB tại trung điểm của AB.
Thực hành 1 trang 67 Toán 7 Tập 2: Cho hình chữ nhật ABCD, trên cạnh AB lấy các điểm M, N, P và trên cạnh DC lấy các điểm M’, N’, P’. Cho biết AM = MN = NP = PB và MM’, NN’, PP’ đều song song với BC (Hình 3). Tìm đường trung trực của mỗi đoạn thẳng AB, AN và NB.
Lời giải:
Do ABCD là hình chữ nhật nên MM’ AB, NN’ AB, PP’ AB.
Ta có AN = AM + MN; NB = NP + PB.
Do AM = MN = NP = PB nên AN = NB và N nằm giữa AB do đó N là trung điểm của AB.
Khi đó NN’ AB và N là trung điểm của AB nên đường trung trực của đoạn AB là NN’.
Do AM = MN và M nằm giữa AN nên M là trung điểm của AN.
Do MM’ AN và M là trung điểm của AN nên đường trung trực của đoạn AN là MM’.
Do NP = PB và P nằm giữa N và B nên P là trung điểm của NB.
Do PP’ NB và P là trung điểm của NB nên đường trung trực của đoạn NB là PP’.
Vận dụng 1 trang 67 Toán 7 Tập 2: Trong Hình 4, hãy cho biết BD có là đường trung trực của đoạn thẳng AC hay không. Tại sao?
Lời giải:
Do DA = DC (theo giả thiết) nên D nằm trên đường trung trực của đoạn thẳng AC (1).
Suy ra DP AC.
Xét △BPA vuông tại P và △BPC vuông tại P có:
BP chung.
PA = PC (theo giả thiết).
Suy ra △BPA = △BPC (2 cạnh góc vuông).
Do đó BA = BC (2 cạnh tương ứng).
Suy ra B nằm trên đường trung trực của AC (2).
Từ (1) và (2) suy ra BD là đường trung trực của đoạn thẳng AC.
Lời giải bài tập Toán 7 Bài 5: Đường trung trực của một đoạn thẳng hay khác:
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Chân trời sáng tạo
- Giải SBT Toán 7 Chân trời sáng tạo
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST