Giải Toán 7 trang 109 Tập 2 Cánh diều

Với Giải Toán 7 trang 109 Tập 2 trong Bài 11: Tính chất ba đường phân giác của tam giác Toán 7 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 7 làm bài tập Toán 7 trang 109.

Luyện tập 1 trang 109 Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung tuyến của tam giác đó.

Lời giải:

Cho tam giác ABC cân tại A Vẽ đường phân giác AD

Do tam giác ABC cân tại A nên AB = AC.

Do AD là đường phân giác của ∆ABC nên BAD^=CAD^.

Xét ∆ABD và ∆ACD có:

AB = AC (chứng minh trên).

BAD^=CAD^ (chứng minh trên).

AD chung.

Do đó ∆ABD = ∆ACD (c - g - c).

Suy ra BD = CD (2 cạnh tương ứng).

Mà D nằm giữa B và C nên D là trung điểm của BC hay AD là đường trung tuyến của ∆ABC.

Hoạt động 2 trang 109 Toán lớp 7 Tập 2: Quan sát các đường phân giác AD, BE, CK của tam giác ABC (Hình 114), cho biết ba đường phân giác đó có cùng đi qua một điểm hay không.

Quan sát các đường phân giác AD, BE, CK của tam giác ABC (Hình 114)

Lời giải:

Ta thấy ba đường phân giác AD, BE, CK của tam giác ABC cùng đi qua điểm I.

Lời giải bài tập Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác