Giải Toán 7 trang 42 Tập 1 Cánh diều

Với Giải Toán 7 trang 42 Tập 1 trong Bài 2. Tập hợp R các số thực Toán 7 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 7 làm bài tập Toán 7 trang 42.

Bài 1 trang 42 Toán lớp 7 Tập 1: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) Nếu a thì a .

b) Nếu a thì a .

c) Nếu a thì a .

d) Nếu a thì a .

Lời giải:

a) Nếu a ∈ ℤ thì a ∈ ℝ.

Nếu a ∈ ℤ tức a là số nguyên, mà mọi số nguyên đều là số thực, do đó a ∈ ℝ.

Vậy phát biểu a) đúng.

b) Nếu a ∈ ℚ thì a ∈ ℝ.

Nếu a ∈ ℚ tức a là số hữu tỉ, mà mọi số hữu tỉ đều là số thực a ∈ ℝ.

Vậy phát biểu b) đúng.

c) Nếu a ∈ ℝ thì a ∈ ℤ.

Nếu a ∈ ℝ tức a là số thực, mà không phải số thực nào cũng là số nguyên.

Chẳng hạn, 1,4 ∈ ℝ nhưng 1,4 ∉ ℤ.

Do đó phát biểu c) sai.

d) Nếu a ∈ ℝ thì a ∉ ℚ.

Nếu a ∈ ℝ tức a là số thực, mà không phải số thực nào cũng không phải là số hữu tỉ.

Chẳng hạn, 33 ∈ ℝ nhưng 33 ∈ ℚ

Do đó phát biểu d) sai.

Vậy, trong các phát biểu trên: Phát biểu đúng là a và b; Phát biểu sai là c và d.

Bài 2 trang 42 Toán lớp 7 Tập 1: Tìm số đối của mỗi số sau:835;56;187;1,15;21,54;7;5.

Lời giải:

Số đối của 835835.

Số đối của 5656.

Số đối của -187 là 187.

Số đối của 1,15 là - 1,15.

Số đối của –21,54 là 21,54.

Số đối của -77.

Số đối của 5-5.

Bài 3 trang 42 Toán lớp 7 Tập 1 : So sánh:

a) –1,(81) và –1,812;

b) 217 và 2,142;

c) –48,075… và –48,275…;

d) 58

Lời giải:

a) Hai số cần so sánh là hai số âm nên ta đi so sánh số đối của chúng.

Số đối của –1,(81) là 1,(81). 

Số đối của –1,812 là 1,812.

Ta có: 1,(81) = 1, 8181…

So sánh: 1,8181…và 1,812 ta thấy: Kể từ trái sang phải, cặp chữ số cùng hàng đầu tiên khác nhau là cặp chữ số ở vị trí hàng phần nghìn. Mà 8 > 2 nên 1,8181… > 1,812. 

Do đó –1,8181… < –1,812 hay –1,(81) < -1,812.

b) Ta thấy 217 và 2,142 có phần nguyên giống nhau nên ta đi so sánh 17 và 0,142.

Ta thực hiện đặt phép tính chia 1 cho 7 như sau:

So sánh: –1,(81) và –1,812

Vậy 17=0,1428...

Ta so sánh 0,1428… và 0,1420

Kể từ trái sang phải, cặp số cùng hàng đầu tiên khác nhau là cặp chữ số hàng phần chục nghìn. Mà 8 > 0 nên 0,1428… > 0,1420 hay 17>0,142 nên 217>2,142

c) Hai số cần so sánh là hai số âm nên ta đi so sánh hai số đối của chúng.

Số đối của –48,075… là 48,075… 

Số đối của –48,275… là 48,275… 

Ta so sánh 48,075…   và 48,275… 

Kể từ trái sang phải, cặp số cùng hàng đầu tiên khác nhau là cặp số hàng phần mười. Mà 0 < 2 nên 48,075… < 48,275…Do đó –48,075… > –48,275…

d) Vì 8 > 5 > 0 nên 8>5.

Bài 4 trang 42 Toán lớp 7 Tập 1: Tìm chữ số thích hợp cho ?:

a) 5,02<5,?1;

b) 3,7?8>3,715;

c) 0,5?742<0,59653;

d) 1,4?<1,49.

Lời giải:

a) Vì 5,02<5,?1 nên 5,02 > 5,?1 .

Ta xét hai số 5,02 và 5,?1 thấy phần nguyên của hai số giống nhau nên để số 5,02 > 5,?1 thì ? phải điền số 0 vì nếu là số lớn hơn 0 thì không thỏa mãn.

b) Vì 3,7?8>3,715 nên 3,7?8 < 3,715. 

Ta xét hai số 3,7 8 và 3,715 thấy phần nguyên và hàng phần mười của hai số giống nhau; hàng phần nghìn có 8 > 5 nên hàng phần trăm của 3,7?8 phải nhỏ hơn hàng phần trăm của 3,715. 

Do đó ? chỉ có thể là 0.

c) Vì 0,5?742<0,59653 nên 0,5?(742) > 0,59653. 

Ta xét hai số 0,5?(742) và 0,59653 thấy phần nguyên và hàng phần mười của hai số giống nhau nếu ? nhỏ hơn 9 thì 0,5?(742) < 0,58653 nên ? chỉ có thể là 9.

d) Vì 1,4?<1,49 nên 1,4? > 1,49

Ta có: 1,4?=1,4?4?... ta thấy nếu ?< 9 thì 1,4?=1,4?4?...< 1,49 nên ? chỉ có thể là 9.

Bài 5 trang 42 Toán lớp 7 Tập 1:

a) Sắp xếp các số sau theo thứ tự tăng dần: 

–2,63…; 3,(3); –2,75…; 4,62.

b) Sắp xếp các số sau theo thứ tự giảm dần: 

1,371…; 2,065; 2,056…; –0,078…;1,(37).

Lời giải:

a) Nhận thấy trong các số trên thì có số thập phân dương và số thập phân âm và số thập phân âm luôn nhỏ hơn số thập phân dương.

Do đó ta chia thành các số trên thành hai nhóm để so sánh là nhóm số thập phân âm và nhóm số thập phân dương.

Nhóm 1: –2,63…; –2,75…

Nhóm 2: 3, (3); 4,62.

+) Xét nhóm 1: –2,63…; –2,75….

Đây là hai số thập phân âm nên ta so sánh số đối của chúng là 2,63… và 2,75…

Kể từ trái sang phải, cặp số cùng hàng đầu tiên khác nhau của hai số 2,63… và 2,75… là cặp số hàng phần mười. Mà 6 < 7 nên 2,63… < 2,75…. Do đó –2,63… > –2,75…

+) Xét nhóm 2: 3,(3); 4,62

Ta có 3,(3) = 3,33…

Kể từ trái sang phải, cặp số cùng hàng đầu tiên khác nhau của hai số 3,33…và 4,62 là cặp số hàng đơn vị. 

Mà 3 < 4 nên 3,33… < 4,62.

Sắp xếp các số theo thứ tự tăng dần: -2,75…; -2,63…; 3,(3); 4,62.

b) Ta thấy số thập phân âm bé hơn số thập phân dương nên –0,078 nhỏ nhất

Ta đi so sánh 1,371…; 2,065; 2,056…; 1,(37).

Vì 2 > 1 nên ta sẽ có những số có phần nguyên là 2 sẽ lớn hơn những số có phần nguyên là 1. 

Ta chia bốn số trên thành 2 nhóm để so sánh.

+) Nhóm 1 gồm 1,371… và 1,(37) = 1,3737…

Kể từ trái sang phải, cặp số cùng hàng đầu tiên khác nhau của hai số 1,371… và 1,3737… là cặp số hàng phần nghìn. 

Mà 3 > 1 nên 1,3737… > 1,371… 

Do đó 1,(37) > 1,371….

+) Nhóm 2 gồm 2,065 và 2,056….

Kể từ trái sang phải, cặp số cùng hàng đầu tiên khác nhau của hai số 2,065 và 2,056…. là cặp số hàng phần trăm mà 6 > 5 nên 2,065 > 2,056…

Sắp xếp các số theo thứ tự giảm dần: 2,065; 2,056…; 1,(37); 1,371…; –0,078…

Lời giải bài tập Toán 7 Bài 2. Tập hợp R các số thực hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác