Giải Toán 12 trang 84 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 84 Tập 2 trong Tính nguyên hàm và tích phân với phần mềm GeoGebra. Tính gần đúng tích phân bằng phương pháp hình thang Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 84.

Thực hành 2 trang 84 Toán 12 Tập 2: Sử dụng phương pháp hình thang, tính gần đúng 12exxdx với độ chính xác 0,01.

Lời giải:

1. Ta có: fx=exx

f'x=exx'=exxexx2=1x1x2 ex;

 f''x=1x1x2 ex'=1x2x2+2x3ex

f'''x=1x2x2+2x3ex'=1x3x2+6x36x4ex

f'''(x) = 0 thì x ≈ 1,596.

Ta có f''(1) = e; f''(1,596) ≈ 0,333 ∙ e1,569; f''(2) = e24

Do đó, M=maxx1;2f''x=e

2. Ta cần tìm n sao cho:

213e12n2<0,01e12n2<0,01n>25e3.

Do đó, ta chọn n = 5.

3. Chia đoạn [1; 2] thành 5 đoạn có độ dài bằng nhau là [1; 1,2], [1,2; 1,4], [1,4; 1,6], [1,6; 1,8], [1,8; 2].

Áp dụng công thức hình thang, ta có:

12exxdx2125e11+2e1,21,2+2e1,41,4+2e1,61,6+2e1,81,8+e22≈ 3,065.

Vận dụng trang 84 Toán 12 Tập 2: Một thân cây dài 4,8 m được cắt thành các khúc gỗ dài 60 cm. Người ta đo đường kính của mỗi mặt cắt ngang và diện tích S của nó được ghi lại trong bảng dưới đây, ở đây x (cm) là khoảng cách tính từ đỉnh thân cây đến vết cắt.

x (cm)

0

60

120

180

240

300

360

420

480

S (cm2)

240

248

256

260

264

272

298

316

320

Tìm thể tích gần đúng của thân cây này.

Hướng dẫn.

Thể tích cần tính là V=0480Sxdx, trong đó S(x) là diện tích mặt cắt ngang tại vị trí cách đỉnh thân cây một khoảng x (cm). Sử dụng phương pháp hình thang để tính gần đúng tích phân này.

Lời giải:

Thể tích gần đúng của thân cây đã cho là V=0480Sxdx

Ta chia đoạn [0; 480] thành n = 8 đoạn con có độ dài bằng nhau, mỗi đoạn có độ dài là 60. Các đoạn đó là: [0; 60], [60; 120], [120; 180], [180; 240], [240; 300], [300; 360], [360; 420], [420; 480].

Áp dụng công thức hình thang, ta có:

V=0480Sxdx480028 (240 + 2 ∙ 248 + 2 ∙ 256 + 2 ∙ 260 + 2 ∙ 264 + 2 ∙ 272 + 2 ∙ 298

                                          + 2.316 + 320] = 131 640 (cm3) = 0,13164 (m3­).

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác