Luyện tập 5 trang 77 Toán 12 Tập 2 - Kết nối tri thức

Luyện tập 5 trang 77 Toán 12 Tập 2: Trở lại tình huống mở đầu Mục 2. Thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là 0,2%.

a) Trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo X của ông M là bao nhiêu?

b) Sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo X của ông M là bao nhiêu?

Lời giải:

a) Vì thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là 0,2% nên trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo X của ông M là p = 0,2% = 0,002.

b) Gọi A là biến cố: “Ông M mắc bệnh hiểm nghèo X”; B là biến cố: “Xét nghiệm cho kết quả dương tính”.

Khi đó xác suất mắc bệnh hiểm nghèo X của ông M sau khi xét nghiệm cho kết quả dương tính chính là xác suất P(A | B).

Áp dụng công thức ta có

P(A | B) = PAPB|APAPB|A+PA¯PB|A¯.

Theo câu a) ta có: P(A) = p = 0,002. Suy ra P(A¯) = 1 – P(A) = 1 – 0,002 = 0,998.

P(B | A) là xác suất xét nghiệm cho kết quả dương tính nếu ông M mắc bệnh hiểm nghèo X. Theo bài ra ta có P(B | A) = 0,95.

P(B | A¯) là xác suất xét nghiệm cho kết quả dương tính nếu ông M không mắc bệnh hiểm nghèo X. Theo bài ra ta có P(B | A¯) = 0,01.

Khi đó, thay vào công thức Bayes ta được

PA | B=0,0020,950,0020,95+0,9980,010,16.

Vậy sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo X của ông M là khoảng 0,16.

Lời giải bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác