Giải Toán 12 trang 74 Tập 1 Chân trời sáng tạo

Với Giải Toán 12 trang 74 Tập 1 trong Bài 1: Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 74.

Bài 2 trang 74 Toán 12 Tập 1: Biểu đồ dưới đây biểu diễn số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến dưới 6 lượt đặt bàn; cột thứ hai biểu diễn số ngày có từ 6 đến dưới 11 lượt đặt bàn; …

Bài 2 trang 74 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên.

Bài 3 trang 74 Toán 12 Tập 1: Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

Chiều cao (m)

[8,4; 8,6)

[8,6; 8,8)

[8,8; 9,0)

[9,0; 9,2)

[9,2; 9,4)

Số cây

5

12

25

44

14

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?

Lời giải:

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là:

R = 9,4 – 8,4 = 1 (m).

Cỡ mẫu n = 100.

Gọi x1; x2; …; x100 là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.

Ta có x1; …; x5 ∈ [8,4; 8,6), x6; …; x17 ∈ [8,6; 8,8), x18­; …; x42 ∈ [8,8; 9,0),

   x43; …; x86 ∈ [9,0; 9,2), x87; …; x100 ∈ [9,2; 9,4).

Tứ phân vị thứ nhất của mẫu số liệu gốc là 12x25+x26 ∈ [8,8; 9,0).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q1=8,8+10045+12259,08,8=8,864.

Tứ phân vị thứ ba của mẫu số liệu gốc là 12x75+x76 ∈ [9,0; 9,2).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

Q3=9,0+310045+12+25449,29,0=9,15.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

Q = Q3 – Q1 = 9,15 – 8,864 = 0,286.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m thuộc nhóm [8,4; 8,6).

Vì Q1 – 1,5∆Q = 8,864 – 1,5 ∙ 0,286 = 8,435 > 8,4 nên chiều cao của cây keo cao 8,4 m là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

Lời giải:

Từ biểu đồ đã cho, ta có có bảng thống kê sau:

Số lượt đặt bàn

[1; 6)

[6; 11)

[11; 16)

[16; 21)

[21; 26)

Số ngày

14

30

25

18

5

Cỡ mẫu n = 14 + 30 + 25 + 18 + 5 = 92.

Gọi x1; x2; …; x92 là mẫu số liệu gốc về số lượt khách đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng được xếp theo thứ tự không giảm.

Ta có x1; …; x14 ∈ [1; 6), x15; …; x44 ∈ [6; 11), x45­; …; x69 ∈ [11; 16),

   x70; …; x87 ∈ [16; 21), x88; …; x92 ∈ [21; 26).

Tứ phân vị thứ nhất của mẫu số liệu gốc là 12x23+x24 ∈ [6; 11).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q1=6+9241430116=152 = 7,5.

Tứ phân vị thứ ba của mẫu số liệu gốc là 12x69+x70 .

Mà x69 ∈ [11; 16) và x70 ∈ [16; 21)

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q3 = 16.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

Q = Q3 – Q1 = 16 – 7,5 = 8,5.

Bài 3 trang 74 Toán 12 Tập 1: Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

Chiều cao (m)

[8,4; 8,6)

[8,6; 8,8)

[8,8; 9,0)

[9,0; 9,2)

[9,2; 9,4)

Số cây

5

12

25

44

14

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?

Lời giải:

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là:

R = 9,4 – 8,4 = 1 (m).

Cỡ mẫu n = 100.

Gọi x1; x2; …; x100 là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.

Ta có x1; …; x5 ∈ [8,4; 8,6), x6; …; x17 ∈ [8,6; 8,8), x18­; …; x42 ∈ [8,8; 9,0),

   x43; …; x86 ∈ [9,0; 9,2), x87; …; x100 ∈ [9,2; 9,4).

Tứ phân vị thứ nhất của mẫu số liệu gốc là 12x25+x26 ∈ [8,8; 9,0).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q1=8,8+10045+12259,08,8=8,864.

Tứ phân vị thứ ba của mẫu số liệu gốc là 12x75+x76 ∈ [9,0; 9,2).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

Q3=9,0+310045+12+25449,29,0=9,15.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

Q = Q3 – Q1 = 9,15 – 8,864 = 0,286.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m thuộc nhóm [8,4; 8,6).

Vì Q1 – 1,5∆Q = 8,864 – 1,5 ∙ 0,286 = 8,435 > 8,4 nên chiều cao của cây keo cao 8,4 m là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

Bài 4 trang 74 Toán 12 Tập 1: Hai bảng tần số ghép nhóm dưới đây thống kê theo độ tuổi số lượng thành viên nam và thành viên nữ đang sinh hoạt trong một câu lạc bộ dưỡng sinh.

Bài 4 trang 74 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

a) Hãy tính các khoảng tứ phân vị của tuổi nam giới và nữ giới trong mỗi bảng số liệu ghép nhóm trên.

b) Hãy cho biết trong câu lạc bộ trên, nam giới hay nữ giới có tuổi đồng đều hơn.

Lời giải:

a)

• Nam giới:

Cỡ mẫu n = 4 + 7 + 4 + 6 + 15 + 12 + 2 = 50.

Gọi x1; x2; …; x50 là mẫu số liệu gốc về tuổi của nam giới đang sinh hoạt trong câu lạc bộ dưỡng sinh được xếp theo thứ tự không giảm.

Ta có x1; …; x4 ∈ [50; 55), x5; …; x11 ∈ [55; 60), x12­; …; x15 ∈ [60; 65),

   x16; …; x21 ∈ [65; 70), x22; …; x36 ∈ [70; 75), x37; …; x48 ∈ [75; 80),

   x49; x50 ∈ [80; 85).

Tứ phân vị thứ nhất của mẫu số liệu gốc là x13 ∈ [60; 65).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q1=60+5044+746560=61,875.

Tứ phân vị thứ ba của mẫu số liệu gốc là x38 ∈ [75; 80).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

Q3=75+35044+7+4+6+15128075=75,625.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm về tuổi của nam giới đang sinh hoạt trong câu lạc bộ dưỡng sinh là:

Q = Q3 – Q1 = 75,625 – 61,875 = 13,75.

• Nữ giới:

Cỡ mẫu n' = 3 + 4 + 5 + 3 + 7 + 14 + 13 + 1 = 50.

Gọi y1; y2; …; y50 là mẫu số liệu gốc về tuổi của nữ giới đang sinh hoạt trong câu lạc bộ dưỡng sinh được xếp theo thứ tự không giảm.

Ta có y1; …; y4 ∈ [50; 55), y4; …; y7 ∈ [55; 60), y; …; y12 ∈ [60; 65),

   y13; …; x15 ∈ [65; 70), y16; …; y22 ∈ [70; 75), y23; …; y36 ∈ [75; 80),

   y37; …; y49 ∈ [80; 85), y50 ∈ [85; 90).

Tứ phân vị thứ nhất của mẫu số liệu gốc là y13 ∈ [65; 70).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q'1=65+5043+4+537065=3956.

Tứ phân vị thứ ba của mẫu số liệu gốc là y38 ∈ [80; 85).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

Q'3=80+35043+4+5+3+7+14138580=209526.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm về tuổi của nữ giới đang sinh hoạt trong câu lạc bộ dưỡng sinh là:

'Q = Q'3 – Q'1 = 2095263956=57539 ≈ 14,74.

b) Ta có ∆'Q ≈ 14,74 > ∆Q = 13,75 nên trong câu lạc bộ dưỡng sinh, nam giới có tuổi đồng đều hơn.

Lời giải bài tập Toán 12 Bài 1: Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác