Giải Toán 12 trang 63 Tập 2 Chân trời sáng tạo

Với Giải Toán 12 trang 63 Tập 2 trong Bài 3: Phương trình mặt cầu Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 63.

Hoạt động khám phá 2 trang 63 Toán 12 Tập 2:

a) Trong không gian Oxyz, cho điểm M(x; y; z) thay đổi có tọa độ luôn thỏa mãn phương trình x2 + y2 + z2 – 2x – 4y – 6z – 11 = 0. (*)

i) Biến đổi (*) về dạng: (x – 1)2 + (y – 2)2 + (z – 3)2 = 25.

ii) Chứng tỏ M(x; y; z) luôn thuộc mặt cầu (S). Tìm tâm và bán kính của (S).

b) Bằng cách biến đổi phương trình x2 + y2 + z2 – 2x – 4y – 6z + 15 = 0 (**) về dạng (x – 1)2 + (y – 2)2 + (z – 3)2 = −1, hãy cho biết phương trình (**) có thể là phương trình mặt cầu hay không?

Lời giải:

a) x2 + y2 + z2 – 2x – 4y – 6z – 11 = 0

⇔ x2 – 2x + 1 + y2 – 4y + 4 + z2 – 6z + 9 – 25 = 0

⇔ (x – 1)2 + (y – 2)2 + (z – 3)2 = 25.

aii) Ta thấy (x – 1)2 + (y – 2)2 + (z – 3)2 = 25 là phương trình mặt cầu với tâm I(1; 2; 3) và bán kính R = 5.

b) Ta có x2 + y2 + z2 – 2x – 4y – 6z + 15 = 0

⇔ x2 – 2x + 1 + y2 – 4y + 4 + z2 – 6z + 9 – 14 + 15 = 0

⇔ (x – 1)2 + (y – 2)2 + (z – 3)2 = −1.

Vì −1 < 0 nên đây không phải là phương trình mặt cầu.

Thực hành 2 trang 63 Toán 12 Tập 2: Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.

a) x2 + y2 + z2 + 4z – 32 = 0;

b) x2 + y2 + z2 + 2x + 2y – 2z + 4 = 0.

Lời giải:

a) Phương trình x2 + y2 + z2 + 4z – 32 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = 0; b = 0; c = −2; d = −32.

Ta có a2 + b2 + c2 – d = (−2)2 + 32 = 34 > 0.

Do đó đây là phương trình mặt cầu với I(0; 0; −2) và R=34

b) Phương trình x2 + y2 + z2 + 2x + 2y – 2z + 4 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −1; b = −1; c = 1; d = 4.

Có a2 + b2 + c2 – d = (−1)2 + (−1)2 + 12 – 4 = −1 < 0.

Do đó đây không phải là phương trình mặt cầu.

Lời giải bài tập Toán 12 Bài 3: Phương trình mặt cầu hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác