Giải Toán 12 trang 35 Tập 1 Chân trời sáng tạo
Với Giải Toán 12 trang 35 Tập 1 trong Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản Toán 12 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 12 dễ dàng làm bài tập Toán 12 trang 35.
Thực hành 4 trang 35 Toán 12 Tập 1: Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0), d' là khoảng cách từ thấu kính đến ảnh (ảnh thật thì d' > 0, ảnh ảo thì d' < 0). Ta có công thức:
hay .
(Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 182, 187).
Xét trường hợp f = 3, đặt x = d, y = d'. Ta có hàm số và x ≠ 3.
a) Khảo sát và vẽ đồ thị của hàm số trên.
b) Dựa vào đồ thị hàm số trên, hãy cho biết vị trí của vật để ảnh của vật là: ảnh thật, ảnh ảo.
c) Khi vật tiến gần đến tiêu điểm thì ảnh thay đổi như thế nào?
Lời giải:
a) Vì d > 0 nên với x = d thì x > 0.
Xét hàm số với x > 0 và x ≠ 3.
1. Tập xác định: D = (0; 3) ∪ (3; + ∞).
2. Sự biến thiên:
● Chiều biến thiên:
Đạo hàm y' = . Vì y' < 0 với mọi x > 0 và x ≠ 3 nên hàm số nghịch biến trên mỗi khoảng (0; 3) và (3; + ∞).
● Tiệm cận:
Ta có . Suy ra đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số.
Ta có . Suy ra đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.
● Bảng biến thiên:
3. Đồ thị:
Đồ thị hàm số đi qua điểm (2; – 6) và điểm (6; 6).
Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.
b)
● Để vật là ảnh thật thì d' > 0, tức là y > 0.
Quan sát đồ thị hàm số , ta thấy trên khoảng (3; + ∞), đồ thị hàm số nằm phía trên trục Ox nên y > 0 trên khoảng này. Vậy với x > 3, tức d > 3 hay khoảng cách từ vật đến thấy kính lớn hơn 3 thì ảnh của vật là ảnh thật.
● Để vật là ảnh ảo thì d' < 0, tức là y < 0.
Quan sát đồ thị hàm số , ta thấy trên khoảng (0; 3), đồ thị hàm số nằm phía dưới trục Ox nên y < 0 trên khoảng này. Vậy với x ∈ (0; 3), tức d ∈ (0; 3) hay khoảng cách từ vật đến thấu kính lớn hơn 0 và nhỏ hơn 3 thì ảnh của vật là ảnh ảo.
c) Khi vật tiến gần đến tiêu điểm, tức vị trí A tiến gần đến vị trí F, thì khoảng cách AF dần tiến tới 0, hay d – f → 0, suy ra d → f, tức là x → 3.
Thực hành 5 trang 35 Toán 12 Tập 1: Người ta muốn chế tạo một chiếc hộp hình hộp chữ nhật có thể tích 500 cm3 với yêu cầu dùng ít vật liệu nhất.
Chiều cao hộp phải là 2 cm, các kích thước khác là x, y với x > 0 và y > 0.
a) Hãy biểu thị y theo x.
b) Chứng tỏ rằng diện tích toàn phần của chiếc hộp là:
.
c) Lập bảng biến thiên của hàm số S(x) trên khoảng (0; + ∞).
d) Kích thước của hộp là bao nhiêu thì dùng ít vật liệu nhất? (Làm tròn kết quả đến hàng phần mười.)
Lời giải:
a) Thể tích của hình hộp chữ nhật cần chế tạo là: V = 2xy (cm3).
Theo bài ra ta có V = 500 cm3, khi đó 2xy = 500, suy ra y = .
b) Diện tích xung quanh của chiếc hộp là
Sxq = 2(x + y) ∙ 2 = 4(x + y) (cm2).
Diện tích toàn phần của chiếc hộp là
Stp = Sxq + 2Sđ = 4(x + y) + 2xy (cm2)
Lại có y = nên Stp = .
Vậy diện tích toàn phần của chiếc hộp là .
c) Xét hàm số với x ∈ (0; + ∞).
Ta có S'(x) = 4 – ;
Trên khoảng (0; + ∞), S'(x) = 0 khi x = .
Ta có ;
Bảng biến thiên:
d) Để dùng ít vật liệu nhất thì diện tích toàn phần của chiếc hộp phải nhỏ nhất.
Căn cứ vào bảng biến thiên ở câu c), ta thấy hàm số S(x) đạt giá trị nhỏ nhất bằng tại x = .
Với x = , ta có y = .
Vậy kích thước 3 cạnh của chiếc hộp là 2 cm, cm, cm thì dùng ít vật liệu nhất.
Lời giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST