Bài 2 trang 36 Toán 12 Tập 1 Chân trời sáng tạo

Bài 2 trang 36 Toán 12 Tập 1: Cho hàm số y = x3 – 3x2 + 2.

a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y" = 0.

b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.

Lời giải:

a) Xét hàm số y = x3 – 3x2 + 2. Tập xác định của hàm số là D = ℝ.

Ta có y' = 3x2 – 6x; y" = 6x – 6;      

          y" = 0 ⇔ x = 1.

Với x = 1, ta có y(1) = 0.

Vậy I(1; 0).

b) Ta có y' = 0 ⇔ 3x2 – 6x = 0 ⇔ x = 0 hoặc x = 2.

Bảng biến thiên:

Bài 2 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do đó, hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2; hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là yCT = – 2.

Hai điểm cực trị của đồ thị hàm số là (0; 2) và (2; – 2).

Ta thấy 0+22=12+22=0. Vậy điểm I(1; 0) là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.

Lời giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác