Bài 1 trang 50 Toán 12 Tập 1 Chân trời sáng tạo

Bài 1 trang 50 Toán 12 Tập 1: Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng:

a) AB+B'C'+DD'=AC';

b) DB'+D'D+BD'=BB';

c) AC+BA'+DB+C'D=0.

Lời giải:

Bài 1 trang 50 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

a) AB+B'C'+DD'=AC'

Do ABCD.A'B'C'D' là hình hộp nên các mặt của nó là hình bình hành.

Khi đó DD'=AA'; B'C'=AD=BC.

Do đó AB+B'C'+DD'=AB+AD+AA'=AC' (theo quy tắc hình hộp).

b) DB'+D'D+BD'=BB'

DB'+D'D+BD'

=DB+BB'+D'B+BD+BD'

=DB+BD+BB'+D'B+BD'

= BB'

DB+BD=0;D'B+BD'=0.

c) AC+BA'+DB+C'D=0

Vì AD // B'C' và AD = B'C' (do cùng song song và bằng BC).

Do đó ADC'B' là hình bình hành.

Suy ra AB'C'D là hai vectơ đối nhau. Do đó AB'+C'D=0.

Tương tự DA'B'C là hình bình hành.

Suy ra B'CDA' là hai vectơ đối nhau. Do đó B'C+DA'=0.

AC+BA'+DB+C'D

=AB'+B'C+DB+BA'+C'D

=AB'+B'C+DA'+C'D

=AB'+C'D+B'C+DA'=0

Lời giải bài tập Toán 12 Bài 1: Vectơ và các phép toán trong không gian hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác