Tích phân (Lý thuyết Toán lớp 12) | Cánh diều
Với tóm tắt lý thuyết Toán 12 Bài 3: Tích phân sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 12 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.
Lý thuyết Tích phân
1. Định nghĩa tích phân
Cho f(x) là hàm số liên tục trên đoạn [a; b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b].
Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là .
Chú ý:
+ Kí hiệu và đọc là F(x) thế cận từ a đến b.
Vậy .
Gọi: là dấu tích phân; a là cận dưới, b là cận trên; f(x)dx là biểu thức dưới dấu tích phân và f(x) là hàm số dưới dấu tích phân.
+ Ta quy ước: .
+ Tích phân của hàm số f từ a đến b chỉ phụ thuộc vào các cận a, b mà không phụ thuộc vào biến số x hay t, nghĩa là .
Ví dụ 1. Tính:
a) ;
b) .
Hướng dẫn giải
a) = 32 – 22 = 5.
b) = e2 – e1 = e2 – e.
2. Tính chất của tích phân
● Tính chất 1: Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Khi đó, ta có:
(k là hằng số).
Ví dụ 2. Cho . Tính .
Hướng dẫn giải
Ta có: .
● Tính chất 2: Cho các hàm số y = f(x), y = g(x) liên tục trên đoạn [a; b]. Khi đó, ta có:
;
.
Ví dụ 3. Tính .
Hướng dẫn giải
Ta có:
.
● Tính chất 3: Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Giả sử c là số thực tùy ý thuộc đoạn [a; b]. Khi đó, ta có:
.
Ví dụ 4. Tính .
Hướng dẫn giải
Ta có:
= 1.
3. Tích phân của một số hàm số sơ cấp
3.1. Tích phân của hàm số lũy thừa
Với α ≠ – 1, ta có: .
Ví dụ 5. Tính:
a) ;
b) .
Hướng dẫn giải
a) = 14 – (– 1)4 = 0.
b) .
3.2. Tích phân của hàm số f(x) =
Với hàm số f(x) = liên tục trên đoạn [a; b], ta có:
.
Ví dụ 6. Tính .
Hướng dẫn giải
Ta có: .
3.3. Tích phân của hàm số lượng giác
● .
● .
● Với hàm số f(x) = liên tục trên đoạn [a; b], ta có:
.
● Với hàm số f(x) = liên tục trên đoạn [a; b], ta có:
.
Ví dụ 7. Tính:
a) ;
b) .
Hướng dẫn giải
3.4. Tích phân của hàm số mũ
Với a > 0, a ≠ 1, ta có: .
Chú ý: Áp dụng công thức trên, ta có: .
Ví dụ 8. Tính:
a) ;
b) .
Hướng dẫn giải
Bài tập Tích phân
Bài 1. Tích phân có giá trị bằng:
Hướng dẫn giải
Đáp án đúng là: C
Ta có: .
Bài 2. Nếu và thì bằng:
A. 8.
B. 2.
C. – 8.
D. – 15.
Hướng dẫn giải
Đáp án đúng là: B
Ta có: .
Bài 3. Cho , F(x) là một nguyên hàm của hàm số f(x) trên đoạn [– 2; 2] và F(– 2) = 5. Tính F(2).
Hướng dẫn giải
Vì F(x) là một nguyên hàm của hàm số f(x) trên đoạn [– 2; 2] nên ta có:
.
Mà , F(– 2) = 5 nên suy ra F(2) = 3 + 5 = 8.
Bài 4. Tính:
Hướng dẫn giải
Bài 5. Một ô tô đang chạy với vận tốc 20 m/s thì người lái ô tô đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = – 5t + 20 (m/s), trong đó t là thời gian tính bằng giây. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô di chuyển được quãng đường bằng bao nhiêu mét?
Hướng dẫn giải
Xe ô tô dừng hẳn khi v(t) = 0, tức là – 5t + 20 = 0 hay t = 4 (giây).
Quãng đường mà ô tô đi được từ lúc đạp phanh đến khi dừng hẳn là:
(m)
Học tốt Tích phân
Các bài học để học tốt Tích phân Toán lớp 12 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 12 Cánh diều hay khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều