Giải Toán 11 trang 74 Tập 2 Kết nối tri thức
Với Giải Toán 11 trang 74 Tập 2 trong Bài 29: Công thức cộng xác suất Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 74.
Luyện tập 2 trang 74 Toán 11 Tập 2: Một hộp đựng 5 quả cầu màu xanh và 3 quả cầu màu đỏ, có cùng kích thước và khối lượng. Chọn ngẫu nhiên hai quả cầu trong hộp. Tính xác suất để chọn được hai quả cầu có cùng màu.
Lời giải:
Gọi A là biến cố “Chọn được hai quả cầu màu xanh”; B là biến cố “Chọn được hai quả cầu màu đỏ”; C là biến cố “Chọn được hai quả cầu có cùng màu”.
Biến cố C xảy ra khi và chỉ khi hai quả cầu được chọn có cùng màu đỏ hoặc có cùng màu xanh. Biến cố A xảy ra khi hai quả cầu được chọn có cùng màu xanh. Biến cố B xảy ra khi hai quả cầu được chọn có cùng màu đỏ. Vậy C là biến cố hợp của A và B hay C = A∪ B.
Vì A và B là hai biến cố xung khắc nên ta có:
P(C) = P(A ∪ B) = P(A) + P(B).
Do đó, ta cần tính P(A) và P(B).
Không gian mẫu Ω là tập hợp gồm các tập con có hai phần tử của tập có 5 + 3 = 8 phần tử. Do đó, n(Ω) = = 28.
Tính P(A):
Biến cố A là tập hợp gồm các tập con có hai phần tử của tập có 5 phần tử (5 quả cầu màu xanh). Do đó, n(A) = = 10. Suy ra, P(A) = .
Tính P(B):
Biến cố B là tập hợp gồm các tập con có hai phần tử của tập có 3 phần tử (3 quả cầu màu đỏ). Do đó, n(B) = = 3. Suy ra, P(B) = .
Vậy P(C) = P(A) + P(B) = .
HĐ3 trang 74 Toán 11 Tập 2: Ở một trường trung học phổ thông X, có 19% học sinh học khá môn Ngữ văn, 32% học sinh học khá môn Toán, 7% học sinh học khá cả hai môn Ngữ văn và Toán. Chọn ngẫu nhiên một học sinh của trường X. Xét hai biến cố sau:
A: “Học sinh đó học khá môn Ngữ văn”;
B: “Học sinh đó học khá môn Toán”.
a) Hoàn thành các mệnh đề sau bằng cách tìm cụm từ thích hợp thay cho dấu “?”.
P(A) là tỉ lệ …(?)… P(AB) là tỉ lệ …(?)…
P(B) là …(?)… P(A∪ B) là …(?)…
b) Tại sao để tính P(A∪ B) ta không áp dụng được công thức P(A ∪ B) = P(A) + P(B)?
Lời giải:
a)
P(A) là tỉ lệ học sinh học khá môn Ngữ văn;
P(B) là tỉ lệ học sinh học khá môn Toán;
P(AB) là tỉ lệ học sinh học khá cả hai môn Ngữ văn và Toán;
P(A∪ B) là tỉ lệ học sinh học khá môn Ngữ văn hoặc học khá môn Toán.
b)
Để tính P(A∪ B) ta không áp dụng được công thức P(A∪ B) = P(A) + P(B) vì hai biến cố A và B không xung khắc, nếu học sinh được chọn nằm trong 7% học sinh học khá cả hai môn Ngữ văn và Toán thì cả A và B cùng xảy ra.
Câu hỏi trang 74 Toán 11 Tập 2: Tại sao công thức cộng xác suất cho hai biến cố xung khắc là hệ quả của công thức cộng xác suất ?
Lời giải:
Công thức cộng xác suất:
P(A∪ B) = P(A) + P(B) – P(AB)
Khi hai biến cố A và B xung khắc thì A ∩ B = nên P(AB) = 0, do đó, công thức cộng xác suất trở thành: P(A∪ B) = P(A) + P(B) – 0 = P(A) + P(B). Đây chính là công thức cộng xác suất cho hai biến cố xung khắc.
Vậy công thức cộng xác suất cho hai biến cố xung khắc là hệ quả của công thức cộng xác suất.
Lời giải bài tập Toán 11 Bài 29: Công thức cộng xác suất hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT