Giải Toán 11 trang 18 Tập 2 Kết nối tri thức
Với Giải Toán 11 trang 18 Tập 2 trong Bài 20: Hàm số mũ và hàm số lôgarit Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 18.
HĐ3 trang 18 Toán 11 Tập 2: Nhận biết hàm số lôgarit
a) Tính y = log2x khi x lần lượt nhận các giá trị 1; 2; 4. Với mỗi giá trị của x > 0 có bao nhiêu giá trị của y = log2x tương ứng?
b) Với những giá trị nào của x, biểu thức y = log2x có nghĩa?
Lời giải:
a) Ta có:
+ Với x = 1 thì y = log21 = 0;
+ Với x = 2 thì y = log22 = 1;
+ Với x = 4 thì y = log24 = log222 = 2.
Nhận thấy với mỗi giá trị của x > 0 có duy nhất một giá trị của y = log2x tương ứng.
b) Biểu thức y = log2x có nghĩa khi x > 0.
Câu hỏi trang 18 Toán 11 Tập 2: Trong các hàm số sau, những hàm số nào là hàm số lôgarit? Khi đó hãy chỉ ra cơ số
a) ;
b) y = ;
c) y = logx2;
d) .
Lời giải:
a) Hàm số là hàm số lôgarit với cơ số .
b) Ta có y = = , do đó hàm số đã cho là hàm số lôgarit với cơ số .
c) Hàm số y = logx2 không phải hàm số lôgarit.
d) Hàm số không phải hàm số lôgarit.
HĐ4 trang 18 Toán 11 Tập 2: Nhận dạng đồ thị và tính chất của hàm số lôgarit
Cho hàm số lôgarit y = log2x.
a) Hoàn thành bảng giá trị sau:
b) Trong mặt phẳng toạ độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) và nối lại ta được đồ thị của hàm số y = log2x.
c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số y = log2x.
Lời giải:
a) Ta có log22– 3 = – 3; log22– 2 = – 2; log22– 1 = – 1; log21 = 0; log22 = 1; log222 = 2; log223 = 3. Vậy ta hoàn thành được bảng đã cho như sau:
b) Trên mặt phẳng tọa độ Oxy, ta biểu diễn các điểm (x; y) ở câu a và lấy thêm nhiều điểm (x; log2x) với x > 0, nối lại ta được đồ thị của hàm số y = log2x như sau:
c) Từ đồ thị đã vẽ ở câu b, nhận thấy hàm số y = log2x:
+ Có tập giá trị là ℝ;
+ Đồng biến trên (0; + ∞).
Lời giải bài tập Toán 11 Bài 20: Hàm số mũ và hàm số lôgarit hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Toán 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit
Toán 11 Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT