Bài 8.15 trang 78 Toán 11 Tập 2 - Kết nối tri thức

Bài 8.15 trang 78 Toán 11 Tập 2: Trong đợt kiểm tra cuối học kì II lớp 11 của các trường trung học phổ thông, thống kê cho thấy có 93% học sinh tỉnh X đạt yêu cầu; 87% học sinh tỉnh Y đạt yêu cầu. Chọn ngẫu nhiên một học sinh của tỉnh X và một học sinh của tỉnh Y. Giả thiết rằng chất lượng học tập của hai tỉnh là độc lập. Tính xác suất để:

a) Cả hai học sinh được chọn đều đạt yêu cầu;

b) Cả hai học sinh được chọn đều không đạt yêu cầu;

c) Chỉ có đúng một học sinh được chọn đạt yêu cầu;

d) Có ít nhất một trong hai học sinh được chọn đạt yêu cầu.

Lời giải:

Xác suất để học sinh tỉnh X không đạt yêu cầu là 100% – 93% = 7% = 0,07.

Xác suất để học sinh tỉnh Y không đạt yêu cầu là 100% – 87% = 13% = 0,13.

Gọi A là biến cố: “Học sinh tỉnh X đạt yêu cầu”.

B là biến cố: “Học sinh tỉnh Y đạt yêu cầu”.

Khi đó ta có P(A) = 0,93; P(B) = 0,87; P(A¯) = 0.07; P(B¯) = 0,13 .

a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:

P(AB) = P(A) . P(B) = 0,93 . 0,87 = 0,8091.

b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là:

P(A¯B¯) = P(A¯).P(B¯) = 0,07 . 0,13 = 0,0091.

c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là:

P(AB¯) + P(A¯B) = 0,93 . 0,13 + 0,07 . 0,87 = 0,1818.

d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là:

P(A ∪ B) = P(A) + P(B) – P(AB) = 0,93 + 0,87 – 0,8091 = 0,9909.

Lời giải bài tập Toán 11 Bài 30: Công thức nhân xác suất cho hai biến cố độc lập hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác