Giải Toán 11 trang 128 Tập 1 Chân trời sáng tạo

Với Giải Toán 11 trang 128 Tập 1 trong Bài tập cuối chương 4 Toán 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 128.

Bài 8 trang 128 Toán 11 Tập 1: Cho hình lăng trụ ABC.A’B’C’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, AA’, A’C’, BC. Ta có:

A. (MNP) // (BCA);

B. (MNQ) // (A’B’C’);

C. (NQP) // (CAB);

D. (MPQ) // (ABA’).

Lời giải:

Đáp án đúng là: D

Ta có: (MPQ) // (ABA’) vì:

MQ // AB ⊂ (ABA’)

Mà MQ ⊂ (MNQ)

Do đó (MPQ) // (ABA’).

Bài 9 trang 128 Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của AB và A’B’ và O là một điểm thuộc miền trong của mặt bên CC’D’D. Tìm giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.

Lời giải:

Bài 9 trang 128 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trong mặt phẳng (CDD’C’), từ điểm O kẻ đường thẳng song song với MN cắt CD tại Q và C’D’ tại P. Suy ra mp(OMN) = mp(MNPQ). Khi đó:

+) Giao tuyến của (OMN) với (ABB’A’) là MN.

+) Giao tuyến của (OMN) với (A’B’C’D’) là NP.

+) Giao tuyến của (OMN) với (CC’D’D) là PQ.

+) Giao tuyến của (OMN) với (ABCD) là MQ.

Bài 10 trang 128 Toán 11 Tập 1: Cho hình chóp SABCD với ABCD là hình thoi cạnh a, tam giác SAD đều. M là điểm trên cạnh AB, (α) là mặt phẳng qua M và (α) // (SAD) cắt CD, SC, SD lần lượt tại N, P, Q.

a) Chứng minh rằng MNPQ là hình thang cân.

b) Đặt AM = x, tính diện tích MNPQ theo a và x.

Lời giải:

Bài 10 trang 128 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Do (α) đi qua M và (α) // (SAD) nên (α) cắt các mặt của hình chóp tại các giao tuyến song song với (SAD).

+) Trong mặt phẳng (ABCD), từ điểm M kẻ đường thẳng song song với AD cắt CD tại N. Suy ra giao tuyến của (α) và (ABCD) là MN // AD.

+) Trong mặt phẳng (SCD), từ điểm N kẻ đường thẳng song song với SD cắt SC tại P. Suy ra giao tuyến của (α) và (SCD) là NP // SD.

+) Trong mặt phẳng (SBC), từ điểm P kẻ đường thẳng song song với BC // AD cắt SB tại Q. Suy ra giao tuyến của (α) và (SBC) là PQ // AD.

+) Trong mặt phẳng (SAB), nối M và Q. Suy ra giao tuyến của (α) và (SAB) là MQ // SA.

a) Xét từ giác MNPQ, có: MN // PQ nên MNPQ là hình thang.

Ta có: SA // MQ, MN // AD và SAD^=60° nên QMN^=60°.

Ta lại có: MN // AD, NP // SD và SDA^=60° nên PNM^=60°.

Suy ra: QMN^=PNM^=60°

Do đó tứ giác MNPQ là hình thang.

b)

+) Ta có ABCD là hình thoi và MN // AD //BC nên MN = a.

+) Trong tam giác ABC, có PQ // BC nên PQBC=SQSB (định lí Thales)

+) Trong tam giác SAB, có: MQ / SA nên SQSB=AMAB=xa (định lí Thales)

Do đó PQBC=xaPQa=xaPQ=x.

+) Ta lại có: BQSB=MQSA=a-xaMQ=a-x

+) Xét tam giác MHQ vuông tại H, có:

sinMQH^=QHMQQH=MQ.sinMQH^=(a-x).sin60°=3(a-x)2.

Vậy diện tích hình thang cân MNPQ là: SMNPQ=(x+a).3(a-x)22=3(a2-x2)4.

Bài 11 trang 128 Toán 11 Tập 1: Cho mặt phẳng (α) và hai đường thẳng chéo nhau a, b cắt (α) tại A và B. Gọi d là đường thẳng thay đổi luôn luôn song song với (α) và cắt a tại M, cắt b tại N. Qua điểm N dựng đường thẳng song song với a cắt (α) tại điểm C.

a) Tứ giác MNCA là hình gì?

b) Chứng minh rằng điểm C luôn luôn chạy trên một đường thẳng cố định.

c) Xác định vị trí của đường thẳng d để độ dài MN nhỏ nhất.

Lời giải:

Bài 11 trang 128 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Vì d // (α) nên phép chiếu song song của d trên mặt phẳng (α) là AC và d // AC hay MN // AC.

Mặt khác ta lại có AM // NC

Do đó tứ giác MNCA là hình bình hành.

b) C luôn chạy trên đường thẳng là hình chiếu của đường thẳng b trên mặt phẳng (α) theo phương chiếu (α).

d) Để độ dài MN nhỏ nhất thì đường thẳng d phải vuông góc với a và vuông góc với b.

Bài 12 trang 128 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng hoàn toàn khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC và BF sao cho MC = 2MA; NF = 2NB. Qua M, N kẻ các đường thẳng song song với AB, cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:

a) MN // DE;

b) M1N1 // (DEF);

c) (MNN1M1) // (DEF).

Lời giải:

Bài 12 trang 128 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

+) Trong mặt phẳng (ABCD) kéo dài DM cắt AB tại O

Vì AO // DC nên AODC=AMMC=OMMD=12 (định lí Thales)

Suy ra AO=12AB.

+) Gọi N’ là giao điểm của BF và OE, khi đó: OBEF=BN'N'F=ON'N'F=12BN'=2N'F nên N’ trùng N.

+) Trong mặt phẳng (ODE), có: OMDM=ONNE=12.

Suy ra MN // DE (định lí Thales đảo).

b) Ta có: MM1 // AB // DC nên AM1DM1=AMMC=12.

Ta lại có: NN1 // AB // EF nên AN1N1F=BNBF=12.

Suy ra AM1DM1=AN1N1F=12

Do đó M1N1 // DF

Mà DF ⊂ (DEF) nên M1N1 // (DEF).

c) Ta có: MN // DE, M1N1 // DF mà DE, DF ⊂ (DEF) và MN, M1N1 ⊂ (MNN1M1); DE và DF cắt nhau tại E nên (MNN1M1) // (DEF).

Lời giải bài tập Toán 11 Bài tập cuối chương 4 hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác