Giải Toán 11 trang 12 Tập 1 Chân trời sáng tạo

Với Giải Toán 11 trang 12 Tập 1 trong Bài 1: Góc lượng giác Toán 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 12.

Thực hành 3 trang 12 Toán 11 Tập 1: Biểu diễn trên đường tròn lượng giác các góc lượng giác có số đo là:

a) – 1 485°;

b) 19π4.

Lời giải:

a) Ta có: – 1 485° = – 45° + ( – 4).360°.

Biểu diễn góc trên đường tròn lượng giác ta được:

Thực hành 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Ta có: 19π4=2π+3π4

Biểu diễn góc trên đường tròn lượng giác ta được:

Thực hành 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 1 trang 12 Toán 11 Tập 1: Đổi số đo của các góc dưới đây sang radian:

a) 38°;

b) – 115°;

c) 3πο.

Lời giải:

a) Ta có: 38° = π.38180=19π90 rad;

b) – 115° = π.115180=23π36 rad;

c) 3πο=π.3π180=160 rad.

Bài 2 trang 12 Toán 11 Tập 1: Đổi số đo của các góc sau đây sang độ:

a) π12;

b) – 5;

c) 13π9.

Lời giải:

a) Ta có: π12 rad = π12.180π=15°.

b) Ta có: −5 rad = 5.180π = 900π;

c) Ta có: 13π9 rad = 13π9.180π=26°.

Bài 3 trang 12 Toán 11 Tập 1: Biểu diễn các góc lượng giác sau trên đường tròn lượng giác:

a) 17π3;

b) 13π4;

c) – 765°.

Lời giải:

a) Ta có: 17π3=2.2ππ2π3

Vì vậy điểm biếu diễn góc lượng giác có số đo 17π3 là điểm nằm trên phần đường tròn lượng giác thuộc góc phần tư thứ I sao cho A'OM^=2π3 hay A'OM^=120°.

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Ta có: 13π4=2π+π+π4

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

c) Ta có: – 765° = (– 2).360° – 45°

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 4 trang 12 Toán 11 Tập 1: Góc lượng giác 31π7 có cùng điểm biểu diễn trên đường tròn lượng giác với góc lượng giác nào dưới đây?

3π7; 10π7; 25π7.

Lời giải:

Hai góc lượng giác α và β có cùng điểm biểu diễn trên đường tròn lượng giác khi tồn tại số nguyên k khác 0 thỏa mãn: α = k.2π + β

Ta có:

Bài 4 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (thỏa mãn) nên có cùng điểm biểu diễn với góc lượng giác 3π7;

Bài 4 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (không thỏa mãn) nên không có cùng điểm biểu diễn với góc lượng giác 10π7;

Bài 4 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11(thỏa mãn) nên có cùng điểm biểu diễn với góc lượng giác 25π7.

Bài 5 trang 12 Toán 11 Tập 1: Viết các công thức số đo tổng quát của các góc lượng giác (OA, OM) và (OA, ON) trong Hình 14.

Bài 5 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Công thức số đo tổng quát của các góc lượng giác (OA, OM) là:

(OA, OM) = 120° + k360° (k ∈ ℤ).

Công thức số đo tổng quát của các góc lượng giác (OA, ON) là:

(OA, ON) = – 75° + k360° (k ∈ ℤ).

Bài 6 trang 12 Toán 11 Tập 1: Trong Hình 15, mâm bánh xe ô tô được chia thành năm phần bằng nhau. Viết công thức số đo tổng quát của góc lượng giác (Ox, ON).

Bài 6 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Vì bánh ô tô được chia làm 5 phần bằng nhau nên mỗi phần có số đo góc là:

360° : 5 = 72°.

Từ hệ thức Chasles, ta suy ra

(Ox, ON) = (Ox, OM) + (OM, ON) + k360°  (k ∈ ℤ)

               = 45° – 2 . 72° + k360° (k ∈ ℤ)

              = – 99° + k360°(k ∈ ℤ)

Vậy công thức số đo tổng quát của góc lượng giác (Ox, ON) = – 99° + k360°(k ∈ ℤ).

Lời giải bài tập Toán 11 Bài 1: Góc lượng giác hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác