Bài 4 trang 70 Toán 11 Tập 1 Chân trời sáng tạo

Bài 4 trang 70 Toán 11 Tập 1: Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dài), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

a) Kí hiệu an là diện tích của hình vuông thứ n và Sn là tổng diện tích của n hình vuông đầu tiên. Viết công thức tính an, Sn (n = 1, 2, 3, ...) và tìm limSn (giới hạn này nếu có được gọi là tổng diện tích của các hình vuông).

b) Kí hiệu pn là chu vi của hình vuông thứ n và Qn là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính pn và Qn (n = 1, 2, 3, ...) và tìm limQn (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

Lời giải:

a) Diện tích của các hình vuông lập thành một cấp số nhân lùi vô hạn (an) với số hạng đầu là u1 = 1 và công bội 12 nên công thức tổng quát của an = 12n1.

Ta có: Sn=1+12+14+...+12n+...

Tổng cấp số nhân lùi vô hạn là: S=limSn=lim1+12+14+...+12n+...=1112=2.

b) Chu vi pn của hình vuông lập thành một cấp số nhân lùi vô hạn với số hạng đầu u1 = 4 và công bội q = 12 có số hạng tổng quát là: pn=412n1.

Ta có: Qn=4+4.12+4.14+...+4.12n+...

Tổng của cấp số nhân lùi vô hạn là: Q=limQn=lim4+4.12+4.14+...+4.12n+...=4112=8.

Lời giải bài tập Toán 11 Bài 1: Giới hạn của dãy số hay, chi tiết khác:

Các bài học để học tốt Toán 11 Bài 1: Giới hạn của dãy số:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác