Bài 4 trang 112 Toán 11 Tập 1 Chân trời sáng tạo
Bài 4 trang 112 Toán 11 Tập 1: Cho tứ diện ABCD và điểm M thuộc cạnh AB. Gọi (α) là mặt phẳng qua M, song song với hai đường thẳng BC và AD. Gọi N, P, Q lần lượt là giao điểm của mặt phẳng (α) với các cạnh AC, CD và DB.
a) Chứng minh MNPQ là hình bình hành.
b) Trong trường hợp nào thì MNPQ là hình thoi?
Lời giải:
a) Trong mặt phẳng (ABC) từ điểm M kẻ đường thẳng song song với BC cắt AC tại N.
Trong mặt phẳng (ACD) từ điểm N kẻ đường thẳng song song với AD cắt cạnh CD tại P.
Trong mặt phẳng (BCD) từ điểm P kẻ đường thẳng song song với BC cắt cạnh BD tại Q.
Nối M với Q lại ta được mặt phẳng (MNPQ) chính là mặt phẳng (α) cần dựng.
Xét tứ giác MNPQ, có:
MN // QP (cùng // BC)
MQ // NP (cùng //AD)
Do đó tứ giác MNPQ là hình bình hành (theo dấu hiệu nhận biết).
b) Để tứ giác MNPQ là hình thoi thì MN = NP, điều này xảy ra trong trường hợp M là trung điểm của AB và AD = BC.
Lời giải bài tập Toán 11 Bài 3: Đường thẳng và mặt phẳng song song hay, chi tiết khác:
Các bài học để học tốt Toán 11 Bài 3: Đường thẳng và mặt phẳng song song:
Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Toán 11 Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm
Toán 11 Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST