Bài 2 trang 31 Toán 11 Tập 1 Cánh diều

Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng π;3π2 để:

a) Hàm số y = tanx nhận giá trị bằng ‒1;

b) Hàm số y = tanx nhận giá trị bằng 0;

c) Hàm số y = cotx nhận giá trị bằng 1;

d) Hàm số y = cotx nhận giá trị bằng 0.

Lời giải:

a) Xét đồ thị hàm số y = ‒1 và đồ thị hàm số y = tanx trên khoảng π;3π2 nhận giá trị bằng ‒1 tại xπ4;π4:

Bài 2 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát đồ thị của hai hàm số, ta thấy hàm số y = tanx nhận giá trị bằng ‒1 tại xπ4;π4.

b) Xét đồ thị hàm số y = tanx trên khoảng π;3π2:

Bài 2 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát hình vẽ, ta thấy hàm số y = tanx trên khoảng π;3π2 nhận giá trị bằng 0 tại x ∈ {0; π}.

c) Xét đồ thị hàm số y = 1 và đồ thị hàm số y = cotx trên khoảng π;3π2:

Bài 2 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát đồ thị của hai hàm số, ta thấy hàm số y = cotx trên khoảng π;3π2 nhận giá trị bằng 1 tại x3π4;π4;5π4.

d) Xét đồ thị hàm số y = cotx trên khoảng π;3π2:

Bài 2 trang 31 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát hình vẽ, ta thấy hàm số y = cotx trên khoảng π;3π2 nhận giá trị bằng 0 tại xπ2;π2.

Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay, chi tiết khác:

Các bài học để học tốt Toán 11 Bài 3: Hàm số lượng giác và đồ thị:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác