Bài 7 trang 45 Toán 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Bài 7 trang 45 Toán lớp 10 Tập 2: Cho tam giác ABC có các điểm M(2; 2), N(3; 4), P(5; 3) lần lượt là trung điểm của các cạnh AB, BC và CA.

a) Tìm tọa độ các đỉnh của tam giác ABC.

b) Chứng minh rằng trọng tâm của tam giác ABC và MNP trùng nhau.

c) Giải tam giác ABC.

Lời giải:

Bài 7 trang 45 Toán 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

a) Gọi A(xA; yA), B(xB; yB), C(xC; yC).

Xét tam giác ABC, có:

M là trung điểm của AB

N là trung điểm của AC

Suy ra MN là đường trung bình của tam giác ABC

⇒ MN//AC hay MN //CP và MN // PA và MN = AP = PC = 12AC

Ta có: MN1;2, PC(xC – 5; yC – 3)

MN=PCBài 7 trang 45 Toán 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Vì P là trung điểm của AC nên ta có tọa độ P thỏa mãn hệ phương trình:

Bài 7 trang 45 Toán 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Vì M là trung điểm của AB nên ta có tọa độ M thỏa mãn hệ phương trình:

Bài 7 trang 45 Toán 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Vậy tọa độ các đỉnh của tam giác ABC lần lượt là: A(4; 1), B(0; 3) và C(6; 5).

b) Xét tam giác ABC, có A(4; 1), B(0; 3) và C(6; 5):

Gọi G là trọng tâm của tam giác ABC. Khi đó tọa độ trọng tâm của tam giác ABC là:

Bài 7 trang 45 Toán 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Xét tam giác MNP, có M(2; 2), N(3; 4), P(5; 3).

Gọi G là trọng tâm của tam giác MNP. Khi đó tọa độ trọng tâm của tam giác MNP là:

Bài 7 trang 45 Toán 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Từ (1) và (2) suy ra G và G’ trùng nhau.

Vậy tam giác ABC và tam giác MNP trùng trọng tâm.

c) Ta có: AB4;2 ⇒ AB = 42+22 = 25;

AC2;4 ⇒ AC = 22+42 = 25;

BC6;2 ⇒ BC = 62+22=210.

Xét tam giác ABC:

Áp dụng hệ quả của định lí cosin, ta có:

cosA = AB2+AC2BC22.AB.AC=252+25221022.25.25=0

A^=90°.

Do AB = AC = 25 nên ∆ABC vuông cân tại A

B^=C^=45°.

Vậy tam giác ABC, có AB = AC = 25, BC = 210, A^=90°B^=C^=45°.

Lời giải bài tập Toán 10 Bài 1: Toạ độ của vectơ hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 1: Toạ độ của vectơ:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác