Câu hỏi khởi động trang 46 Toán 10 Tập 2 Cánh diều

Câu hỏi khởi động trang 46 Toán lớp 10 Tập 2: Gieo một xúc xắc hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt 6 chấm”.

Câu hỏi khởi động trang 46 Toán 10 Tập 2 Cánh diều | Giải Toán 10

Làm thế nào để tính được xác suất của biến cố nói trên?

Lời giải:

Sau bài này, ta sẽ giải quyết bài toán trên như sau:

Để tính xác suất của biến cố, ta cần tìm số phần tử của không gian mẫu và số phần tử của biến cố, sau đó tính tỉ số giữa số phần tử của biến cố và số phần tử của không gian mẫu, đây là xác suất của biến cố cần tìm.

Giải chi tiết:

Gieo một xúc xắc 2 lần liên tiếp, số phần tử của không gian mẫu là n(Ω) = 36.

Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt 6 chấm”.

Các kết quả thuận lợi cho biến cố A là: (6; 1), (6; 2), (6; 3), (6; 4), (6; 5), (6; 6), (1; 6), (2; 6), (3; 6), (4; 6), (5; 6).

Hay A = {(6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6); (1; 6); (2; 6); (3; 6); (4; 6); (5; 6)}.

Do đó, n(A) = 11.

Vậy xác suất của biến cố A là PA=nAnΩ=1136.

Lời giải Toán 10 Bài 5: Xác suất của biến cố hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 5: Xác suất của biến cố:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác