Bài 2 trang 52 Toán 10 Tập 2 Cánh diều

Bài 2 trang 52 Toán lớp 10 Tập 2: Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4; hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.

a) Tính số phần tử của không gian mẫu.

b) Xác định các biến cố sau:

A: “Tổng các số trên ba tấm bìa bằng 9”;

B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

c) Tính P(A), P(B).

Lời giải:

a) Mỗi lần rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp là một tổ hợp chập 3 của 4 phần tử, do đó không gian mẫu Ω gồm các tổ hợp chập 3 của 3 phần tử.

Vậy số phần tử của tập hợp Ω là n(Ω) = C43=4(phần tử).

b) Xét biến cố A: “Tổng các số trên ba tấm bìa bằng 9”.

Ta có: 2 + 3 + 4 = 9.

Vậy chỉ có 1 cách để rút ra 3 tấm bìa có tổng các số trên ba tấm bìa bằng chín.

Do đó A = {(2, 3, 4)}.

Xét biến cố B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

Các bộ ba số tự nhiên liên tiếp trong 4 số 1, 2, 3, 4 là: (1, 2, 3); (2, 3, 4).

Vậy B = {(1, 2, 3); (2, 3, 4)}.

c) Từ câu b) ta thấy, số phần tử của biến cố A là 1 hay n(A) = 1.

Do đó, xác suất của biến cố A là PA=nAnΩ=14.

Số phần tử của biến cố B là 2 hay n(B) = 2.

Do đó, xác suất của biến cố B là PB=nBnΩ=24=12.

Lời giải Toán 10 Bài 5: Xác suất của biến cố hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 5: Xác suất của biến cố:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác