Bài 8 trang 98 Toán 10 Tập 1 Cánh diều

Bài 8 trang 98 Toán lớp 10 Tập 1: Cho tam giác ABC có AB = 2, AC = 3,BAC^=60° . Gọi M là trung điểm của đoạn thẳng BC. Điểm D thỏa mãn AD=712AC.

a) Tính AB.AC.

b) Biểu diễn AM,BD theo AB,AC.

c) Chứng minh AM ⊥ BD.

Lời giải:

Bài 8 trang 98 Toán 10 Tập 1 Cánh diều | Giải Toán 10

 a) Ta có: AB.AC=AB.AC.cosAB,AC

 =AB.AC.cosBAC^= 2 . 3 . cos60° = 3.

b) + Do M là trung điểm của BC nên với điểm A ta có:

AB+AC=2AM

AM=12AB+AC

=12AB+12AC

Do đó: AM=12AB+12AC.

+ Ta có: BD=BA+AD=AB+AD

Mà AD=712AC

Nên

BD=AB+712AC

=AB+712AC

Vậy BD=AB+712AC.

c) Ta có:

AM.BD=12AB+12AC.AB+712AC

=12AB2+724AB.AC12AC.AB+724AC2

=12.AB2+724.AB.AC12AB.AC+724.AC2

 =12.22+724.312.3+724.32= 0

Suy ra: AM.BD=0.

Vậy AM ⊥ BD.

Lời giải bài tập Toán 10 Bài 6: Tích vô hướng của hai vectơ hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 6: Tích vô hướng của hai vectơ:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác