Giải Tin học 12 trang 148 Kết nối tri thức

Với Giải Tin học 12 trang 148 trong Bài 27: Máy tính và Khoa học dữ liệu Tin học 12 Kết nối tri thức hay nhất, ngắn gọn sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Tin 12 Định hướng Khoa học máy tính trang 148.

Câu hỏi 1 trang 148 Tin học 12: Để giải quyết những nhiệm vụ trong Dự án hệ gene người cần phải xử lí và lưu trữ khối lượng dữ liệu có quy mô lớn như thế nào?

Lời giải:

Để giải quyết những nhiệm vụ trong Dự án hệ gene người và xử lí, lưu trữ khối lượng dữ liệu có quy mô lớn, có thể áp dụng các phương pháp và công nghệ sau:

- Hệ thống lưu trữ phân tán: Sử dụng các công nghệ lưu trữ phân tán như Hadoop Distributed File System (HDFS) hoặc Ceph để chia nhỏ dữ liệu thành các phân đoạn và phân phối chúng trên nhiều máy tính trong một cụm hệ thống. Điều này giúp tăng khả năng lưu trữ và xử lý dữ liệu song song, đồng thời cung cấp tính sẵn sàng cao.

- Công nghệ cơ sở dữ liệu phân tán: Sử dụng các cơ sở dữ liệu phân tán như Apache Cassandra hay Apache HBase để lưu trữ và truy xuất dữ liệu trên nhiều máy tính. Các cơ sở dữ liệu này hỗ trợ việc mở rộng quy mô theo nhu cầu, đồng thời cung cấp khả năng xử lý song song và khả năng chịu lỗi cao.

- Công cụ xử lý dữ liệu phân tán: Sử dụng các công cụ phân tích dữ liệu phân tán như Apache Spark hay Apache Hadoop để thực hiện các tác vụ xử lý dữ liệu quy mô lớn. Các công cụ này hỗ trợ việc phân tán tính toán và xử lý song song trên nhiều máy tính, giúp tăng tốc độ xử lý và khả năng xử lý dữ liệu lớn.

- Công nghệ điện toán đám mây: Sử dụng các dịch vụ điện toán đám mây như Amazon Web Services (AWS) hoặc Microsoft Azure để cung cấp khả năng tính toán và lưu trữ linh hoạt, co dãn theo nhu cầu. Điện toán đám mây cung cấp tài nguyên mạnh mẽ và mô hình thanh toán theo yêu cầu, giúp giảm đầu tư cơ sở hạ tầng và tăng tính linh hoạt.

- Kỹ thuật nén dữ liệu: Áp dụng kỹ thuật nén dữ liệu để giảm kích thước lưu trữ và tăng tốc độ truy cập. Có thể sử dụng các thuật toán nén dữ liệu hiệu quả như gzip, Snappy hoặc LZ4 để nén dữ liệu trước khi lưu trữ.

- Quản lý dữ liệu hiệu quả: Sử dụng các phương pháp quản lý dữ liệu hiệu quả như phân đoạn dữ liệu, chỉ lưu trữ những thông tin cần thiết, và xác định các chỉ mục phù hợp để tối ưu hóa việc truy xuất dữ liệu.

Câu hỏi 2 trang 148 Tin học 12: Có thể thực hiện việc phân tích dữ liệu liên quan tới Dự án hệ gene người trên máy tính cá nhân thông thường hay không?

Lời giải:

Không, việc phân tích dữ liệu liên quan đến Dự án hệ gene người đòi hỏi nguồn tài nguyên tính toán mạnh mẽ hơn máy tính cá nhân thông thường.

Luyện tập 1 trang 148 Tin học 12: Nêu ngắn gọn vai trò của máy tính trong sự phát triển của Khoa học dữ liệu

Lời giải:

Máy tính có vai trò không thể thiếu trong mọi giai đoạn của quy trình Khoa học dữ liệu. Nó cung cấp sức mạnh tính toán, khả năng lưu trữ và khả năng tự động hoá cần thiết để xử lí, phân tích và khám phá tri thức từ dữ liệu, góp phần vào sự phát triển và thành công của Khoa học dữ liệu, mở ra cơ hội làm việc với dữ liệu lớn mà trước đây không thể thực hiện được. Điều này đã thúc đẩy sự phát triển của lĩnh vực Khoa học dữ liệu, giúp tạo lập giá trị và tri thức từ nguồn dữ liệu lớn phong phú và đa dạng.

Luyện tập 2 trang 148 Tin học 12: Trong trường hợp xấu nhất, để sắp xếp các đoạn nucleotide ngắn thành hệ gene người hoàn chỉnh, ước tính cần bao nhiêu phép thử?

Lời giải:

Giả sử chúng ta có một chuỗi gốc với tổng cộng N nucleotide và muốn sắp xếp các đoạn nucleotide ngắn thành chuỗi đó.

Nếu các đoạn nucleotide ngắn có độ dài lần lượt là n1, n2, n3, ..., nk (với k là số lượng đoạn), thì số lượng phép thử cần thiết để sắp xếp chúng thành chuỗi đầy đủ là tích của số lượng tổ hợp khác nhau có thể có cho mỗi đoạn.

Với ví dụ đơn giản, giả sử chúng ta chỉ có một đoạn nucleotide ngắn với độ dài n. Trong trường hợp này, số lượng phép thử cần thiết là 4^n, vì mỗi vị trí trong đoạn có thể là một trong 4 loại nucleotide (A, C, G, T).

Vận dụng trang 148 Tin học 12: Sử dụng công cụ tìm kiếm trên Internet để biết được một số bài toán liên quan tới dữ liệu lớn cần tới tính ưu việt của máy tính và các thuật toán hiệu quả để giải quyết.

Lời giải:

Dữ liệu lớn là một lĩnh vực quan trọng trong khoa học máy tính và công nghệ thông tin. Để giải quyết các bài toán liên quan đến dữ liệu lớn, chúng ta cần sự hỗ trợ của máy tính và các thuật toán hiệu quả. Dưới đây là một số điểm quan trọng:

- Thuật toán: Thuật toán là bước quan trọng để xử lý dữ liệu lớn. Các thuật toán phải được thiết kế sao cho hiệu quả và có thể xử lý lượng dữ liệu lớn một cách nhanh chóng.

- Tối ưu hóa: Thuật toán tối ưu hóa giúp tìm ra giải pháp tốt nhất trong một không gian lớn của các biến. Các thuật toán tối ưu hóa được sử dụng để tối ưu hóa các hàm mục tiêu, ví dụ như tối ưu hóa hàm chi phí trong mô hình học máy.

 Mạng nơ-ron sâu (Deep Learning): Deep Learning là một phương pháp học máy dựa trên mạng nơ-ron có khả năng học từ dữ liệu lớn và phức tạp. Nó đã được áp dụng rộng rãi trong xử lý ảnh, ngôn ngữ tự nhiên và nhiều lĩnh vực khác 1.

- Máy tính lượng tử: Máy tính lượng tử có khả năng xử lý lượng tác vụ lớn một cách nhanh chóng hơn máy tính thông thường 2.

- Máy tính quang học: Máy tính quang học cũng là một công cụ mạnh mẽ để giải quyết các bài toán lớn với tốc độ ánh sáng 31.

Lời giải bài tập Tin học 12 Bài 27: Máy tính và Khoa học dữ liệu hay khác:

Xem thêm lời giải bài tập Tin học lớp 12 Kết nối tri thức hay nhất, ngắn gọn khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác