Giải Tin học 10 trang 23 Kết nối tri thức

Với Giải Tin học 10 trang 23 trong Bài 4: Hệ nhị phân và dữ liệu số nguyên Tin học lớp 10 Kết nối tri thức hay nhất, ngắn gọn sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Tin 10 trang 23.

Câu hỏi trang 23 Tin học 10: Hãy thực hiện các phép tính sau trong hệ nhị phân:

a) 101101 + 11001                        b) 100111 × 1011

Lời giải:

a) 101101 + 11001 = 1000110

b) ‭100111 × 1011 = 110101101‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Luyện tập 1 trang 23 Tin học 10: Thực hiện tính toán trên máy tính luôn theo quy trình sau:

Hãy thực hiện các phép tính sau đây theo quy trình Hình 4.4

Hãy thực hiện các phép tính sau đây theo quy trình Hình 4.4.

a) 125 + 17                                    b) 250 + 175                       c) 75 + 112

Lời giải:

a) 01111101 + 00010001 = 10001110 ⇒ 142

b) 11111010 + 10101111 = 110101001 ⇒ 425

c) 1001011 + 1110000 = 10111011 ⇒ 187

Luyện tập 2 trang 23 Tin học 10: Thực hiện tính toán trên máy tính luôn theo quy trình sau: Em hãy thực hiện phép tính sau đây theo quy trình Hình 4.4

Em hãy thực hiện phép tính sau đây theo quy trình Hình 4.4

Em hãy thực hiện phép tính sau đây theo quy trình Hình 4.4

a) 15 × 6                                       b) 11 × 9                    c) 125 × 4

Lời giải:

a) 1111 × 0110 = 1011010 ⇒ 90

b) 1011 × 1001 = 1100011 ⇒ 99

c) 1111101 × 100 = 111110100 ⇒ 500

Vận dụng 1 trang 23 Tin học 10: Em hãy tìm hiểu trên Internet hoặc các tài liệu khác cách đổi phần thập phân của một số trong hệ thập phân sang hệ đếm nhị phân

Lời giải:

Đối với phần lẻ của số thập phân, số lẻ được nhân với 2. Phần nguyên của kết quả sẽ là bit nhị phân, phần lẻ của kết quả lại tiếp tục nhân 2 cho đến khi phần lẻ của kết quả bằng 0.

Ví dụ: Chuyển số 0,625 sang hệ nhị phân

0,625 × 2 = 1,25 = 1,25 (lấy số 1), phần lẻ 0,25

0,25 × 2 = 0,5 = 0,5 (lấy số 0), phần lẻ 0,5

0,5 × 2 = 1,0 = 1.0 (lấy số 1), phần lẻ 0,0

Kết thúc phép chuyển đổi, ta thu được kết quả là 101 (lấy từ phép nhân đầu tiên đến phép nhân cuối cùng)

Vận dụng 2 trang 23 Tin học 10: Em hãy tìm hiểu mã bù 2 với hai nội dung:

a) Mã bù 2 được lập như thế nào?

b) Mã bù 2 được dùng để làm gì?

Lời giải:

a) Một số bù 2 có được do đảo tất cả các bit có trong số nhị phân (đổi 1 thành 0 và ngược lại) rồi thêm 1 vào kết quả vừa đạt được. Trong quá trình tính toán bằng tay cho nhanh người ta thường sử dụng cách sau: từ phải qua trái giữ 1 đầu tiên và các số còn lại bên trái số 1 lấy đảo lại.

Ví dụ: số nguyên −5 ở hệ thập phân được biểu diễn trong máy tính theo phương pháp bù 2 như sau (với mẫu 8 bit):

Bước 1: xác định số nguyên 5 ở hệ thập phân được biểu diễn trong máy tính là: 0000 0101.

Bước 2: đảo tất cả các bit nhận được ở bước 1. Kết quả sau khi đảo là: 1111 1010.

Bước 3: cộng thêm 1 vào kết quả thu được ở bước 2: kết quả sau khi cộng: 1111 1011.

Bước 4: vì là biểu diễn số âm nên bit bên trái cùng luôn giữ là 1.

Vậy với phương pháp bù 2, số −5 ở hệ thập phân được biểu diễn trong máy tính như sau: 1111 1011.

b) Mã bù 2 thường được sử dụng để biểu diễn các số âm trong máy tính. Trong phương pháp này, bit ngoài cùng bên trái (là bit ngoài cùng bên trái của byte) được sử dụng làm bit dấu với quy ước: nếu bit dấu là 0 thì số đó là số dương, còn nếu là 1 thì số là số âm. Ngoài bit dấu này, các bit còn lại được dùng để biểu diễn độ lớn của số.

Lời giải bài tập Tin học lớp 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Tin học lớp 10 Kết nối tri thức hay, ngắn gọn khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác