Cho hình bình hành ABCD có AD = 2AB. Gọi M là trung điểm của AD
Bài 5 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD có AD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng:
a) Tứ giác MDCN là hình thoi;
b) Tam giác EMC là tam giác cân;
c) .
Lời giải:
a) Ta có: MF ⊥ CE, AB ⊥ CE, suy ra MN // AB // CD.
Xét tứ giác MDCN ta có: MD // CN (do AD // BC; M ∈AD, N ∈ BC) và MN // CD (chứng minh trên).
Do đó tứ giác MDCN là hình bình hành.
Mặt khác M là trung điểm của AD nên .
Lại có AD = 2AB mà AB = CD (do ABCD là hình bình hành) nên .
Do đó MD = CD.
Suy ra hình bình hành MDCN là hình thoi.
b) Xét tứ giác ADCE ta có AE // CD (theo câu a).
Do đó, tứ giác ADCE là hình thang với hai đáy AE và CD.
Xét hình thang ADCE có:
M là trung điểm AD (giả thiết);
AE // MF // CD (theo câu a).
Theo chứng minh ở Bài 5, trang 63, SBT Toán 8 Tập Một, ta có: F là trung điểm của CE.
Xét ∆EMC có MF là đường trung tuyến ứng với cạnh CE và MF ⊥ CE (giả thiết).
Do đó ∆EMC cân tại M.
c) Tứ giác MDCN là hình thoi nên (tính chất đường chéo của hình thoi).
Mà ∆EMC cân tại M nên .
Ta có . (1)
Lại có (hai góc so le trong). (2)
Từ (1) và (2) suy ra .
Lời giải SBT Toán 8 Bài 4: Hình bình hành – Hình thoi hay khác:
Xem thêm giải sách bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Chân trời sáng tạo
- Giải SBT Toán 8 Chân trời sáng tạo
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST