Giải SBT Toán 7 trang 28 Tập 2 Kết nối tri thức
Với Giải SBT Toán 7 trang 28 Tập 2 trong Bài 26: Phép cộng và phép trừ đa thức một biến Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 28.
Bài 7.15 trang 28 sách bài tập Toán lớp 7 Tập 2: Cho hai đa thức A(x) = x4 − 5x3 + x2 + 5x − và B(x) = x4 − 2x3 + x2 − 5x − .
Hãy tính A(x) + B(x) và A(x) − B(x).
Lời giải:
Ta có A(x) + B(x)
= +
= x4 − 5x3 + x2 + 5x − + x4 − 2x3 + x2 − 5x −
= (x4 + x4) + (−5x3 − 2x3) + (x2 + x2) + (5x − 5x) +
= 2x4 − 7x3 + 2x2 − 1.
Ta có A(x) − B(x)
= −
= x4 − 5x3 + x2 + 5x − − x4 + 2x3 − x2 + 5x +
= (x4 − x4) +(−5x3 + 2x3)+ (x2 − x2)+ (5x + 5x) +
= −3x3 + 10x + .
Bài 7.16 trang 28 sách bài tập Toán lớp 7 Tập 2: Cho đa thức H(x) = x4 − 3x3 − x +1 . Tìm đa thức P(x) và Q(x) sao cho:
a) H(x) + P(x) = x5 − 2x2 + 2
b. H(x) − Q(x) = −2x3
Lời giải:
a)Ta có H(x) + P(x) = x5 − 2x2 + 2
Suy ra P(x) = (x5 − 2x2 + 2) − H(x)
= (x5 − 2x2 + 2) − (x4 − 3x3 − x +1)
= x5 − 2x2 + 2 − x4 + 3x3 + x − 1
= x5 − x4 + 3x3 − 2x2 + x + (2 − 1)
= x5 − x4 + 3x3 − 2x2 + x + 1
b) Ta có H(x) − Q(x) = −2x3
Suy ra Q(x) = H(x) + 2x3
= x4 − 3x3 − x + 1 + 2x3
= x4 − x3 − x + 1
Bài 7.17 trang 28 sách bài tập Toán lớp 7 Tập 2: Em hãy viết hai đa thức tùy ý A(x) và B(x). Sau đó tính C(x) = A(x) − B(x) và C’(x) = B(x) − A(x), rồi so sánh và nêu nhận xét về bậc, các hệ số của C(x) và C’(x).
Lời giải:
Cho đa thức A(x) = x3 − 2x2 + 5x + 1 và B(x) = 3x3 − x − 5.
Ta có: C(x) = A(x) − B(x)
= (x3 − 2x2 + 5x + 1) − (3x3 − x − 5)
= x3 − 2x2 + 5x + 1 − 3x3 + x + 5
= (x3 − 3x3)− 2x2 + (5x + x) + (1 + 5)
= − 2x3 − 2x2 + 6x + 6
Ta có C’(x) = B(x) − A(x)
= (3x3 − x − 5) − (x3 − 2x2 + 5x + 1)
= 3x3 − x − 5 − x3 + 2x2 − 5x − 1
= 3x3 − x3 + 2x2 + (−x − 5x) + (−5 − 1)
= 2x3 + 2x2 − 6x − 6
Từ hai kết quả trên, ta thấy các hệ số của hai hạng tử cùng bậc trong hai đa thức C(x) và C’(x) là hai số đối nhau.
Bài 7.18 trang 28 sách bài tập Toán lớp 7 Tập 2: Cho các đa thức:
A(x) = 2x3 − 2x2 + x − 4
B(x) = 3x3 − 2x + 3
C(x) = −x3 + 1
Hãy tính:
a) A(x) + B(x) + C(x);
b) A(x) − B(x) − C(x).
Lời giải:
Nhận xét rằng: A + B + C = A + (B + C) và A – B – C = A – (B + C).
Do đó để cho gọn, trước hết hãy tính B + C.
Ta có B(x) + C(x)
= (3x3 − 2x + 3) + (−x3 + 1)
= 3x3 − 2x + 3 − x3 + 1
= (3x3 − x3) − 2x + (3 + 1)
= 2x3− 2x + 4.
a) Ta có A(x) + B(x) + C(x)
= (2x3 − 2x2 + x − 4) + (2x3− 2x + 4)
= 2x3 − 2x2 + x − 4 + 2x3− 2x + 4
= (2x3 + 2x3)− 2x2 + (x − 2x) + (−4 + 4)
= 4x3 − 2x2 − x
b) Ta có A(x) − B(x) − C(x)
= A(x) − [B(x) + C(x)]
= (2x3 − 2x2 + x − 4) − (2x3− 2x + 4)
= 2x3 − 2x2 + x − 4 − 2x3+ 2x − 4
= (2x3 − 2x3)− 2x2 + (x + 2x) + (−4 − 4)
= −2x2 + 3x − 8
Bài 7.19 trang 28 sách bài tập Toán lớp 7 Tập 2: Gọi S(x) là tổng của hai đa thức A(x) và B(x). Biết rằng x = a là một nghiệm của đa thức A(x). Chứng minh rằng:
a) Nếu x = a là một nghiệm của B(x) thì a cũng là một nghiệm của S(x);
b) Nếu a không là nghiệm của B(x) thì a cũng không là nghiệm của S(x).
Lời giải:
Theo đề bài, ta có S(x) = A(x) + B(x) và A(a) = 0. Do đó S(a) = B(a)
a) Nếu a là nghiệm của B(x) thì B(a) = 0, suy ra S(a) = B(a) = 0.
Vậy a cũng là nghiệm của S(x).
b) Ngược lại, nếu a không là nghiệm của B(x) thì B(a) ≠ 0, suy ra S(a) = B(a) ≠ 0. Vậy a không là nghiệm của S(x).
Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT