Giải SBT Toán 7 trang 33 Tập 1 Kết nối tri thức

Với Giải SBT Toán 7 trang 33 Tập 1 trong Ôn tập chương 2 Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 33.

Câu hỏi 1 trang 33 sách bài tập Toán lớp 7 Tập 1: Số nào sau đây viết được dưới dạng số thập phân vô hạn tuần hoàn?

A. 27512;

B. 33528;

C. 31528;

D. 25512.

Lời giải:

Đáp án đúng là: C

Ta có:

27512 là phân số tối giản và có mẫu số là 512. Ta có 512 = 29 nên 27512 có thể viết được dưới dạng số thập phân hữu hạn.

33528=116. Ta thấy 116 có mẫu số là 16 mà 16 = 24 nên 116 có thể viết được dưới dạng số thập phân hữu hạn hay 33528 có thể viết dưới dạng số thập phân hữu hạn.

31528 đây là phân số tối giản có mẫu số là 528. Ta có 528 = 24.3.11 nên 31528 viết được dưới dạng số thập phân vô hạn tuần hoàn.

25512 đây là phân số tối giản có mẫu số là 512 = 29 nên có thể viết được dưới dạng số thập phân hữ hạn.

Câu hỏi 2 trang 33 sách bài tập Toán lớp 7 Tập 1: Số 3,(5) viết được thành phân số nào sau đây?

A. 4111;

B. 329;

C. 4211;

D. 319.

Lời giải:

Đáp án đúng là B

3,(5) = 3 + 0,(5) = 3 + 5.0,(1) = 3 + 5.19 = 3 + 59 = 329.

Câu hỏi 3 trang 33 sách bài tập Toán lớp 7 Tập 1: Số nào dưới đây là bình phương của một số hữu tỉ?

A. 17;

B. 153;

C. 15,21;

D. 0,10100100010000…(viết liên tiếp sau dấu phẩy các lũy thừa của 10: 1010010001000…)

Lời giải:

Đáp án đúng là C

Ta đã biết, căn bậc hai số học của các số tự nhiên không chính phương đều là số vô tỉ nên 17 không phải là bình phương của một số hữu tỉ.

Mặt khác vì 153 = 17.9 nên nếu 153 là bình phương của số hữu tỉ x thì 17.9 = x2, nên 17 = x32 suy ra 17 là bình phương của số hữu tỉ x3 (vô lí).

Do đó, A và B đều sai. Mặt khác, nếu 0,101001000… là bình phương của số hữu tỉ pq thì 0,101001000… = pq.pq. Suy ra 0,101001000.. là số thập phân vô hạn tuần oàn, điều này là vô lí. Do đó, D sai nên chỉ còn C đúng.

Ta sẽ thấy 15,21 = 3,92.

Câu hỏi 4 trang 33 sách bài tập Toán lớp 7 Tập 1: Giá trị nhỏ nhất của biểu thức x2+168 là:

A. -4

B. 8

C. 0

D. -8

Lời giải:

Đáp án đúng là: A

Vì x2 ≥ 0 nên x2 +16 ≥ 0 + 16 = 16, do đó, x2+1616=4

nên x2+1684 - 8 = -4.

Vậy giá trị nhỏ nhất của biểu thức là -4. Dấu “=” xảy ra khi x = 0.

Câu hỏi 5 trang 33 sách bài tập Toán lớp 7 Tập 1: Giá trị lớn nhất của biểu thức 24x5 là:

A. -2;

B. 245;

C. 2;

D. 2+45.

Lời giải:

Đáp án đúng là: C

Để căn xác định thì x ≥ 5

Với mọi x ≥ 5 thì x50 nên 4.x54.0=0

Do đó, 4.x50 nên 24x520 hay 24x52

Vậy giá trị lớn nhất của biểu thức là 2 đạt được khi x = 5.

Câu hỏi 6 trang 33 sách bài tập Toán lớp 7 Tập 1: Trong các khẳng định sau, khẳng định nào đúng?

A. Tích của hai số vô tỉ là một số vô tỉ;

B. Tổng của hai số vô tỉ là một số vô tỉ;

C. Tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ;

D. Thương của hai số vô tỉ là một số vô tỉ.

Lời giải:

Đáp án đúng là C

A. Tích của hai số vô tỉ là một số vô tỉ;

Khảng định này sai vì 2 là số vô tỉ nhưng tích của 2.2 = 2 là số hữu tỉ.

B. Tổng của hai số vô tỉ là một số vô tỉ;

Khẳng định này sai vì 2 là số vô tỉ và -2 cũng là số vô tỉ nhưng 2 + (-2) = 0 lại là số hữu tỉ.

C. Tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ;

Khẳng định này đúng vì tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ.

D. Thương của hai số vô tỉ là một số vô tỉ.

Khẳng định này sai vì 2 là số vô tỉ nhưng 2: 2 = 1 lại là số hữu tỉ.

Câu hỏi 7 trang 33 sách bài tập Toán lớp 7 Tập 1: Với mọi số thực x. Khẳng định nào sau đây sai?

A. |x| ≥ x;

B. |x| ≥ -x;

C. |x|2 = x2;

D. |x| = x.

Lời giải:

Đáp án đúng là: D

Khẳng định sai là D vì nếu x < 0 thì |x| = -x.

Ví dụ: |-5| = 5.

Câu hỏi 8 trang 33 sách bài tập Toán lớp 7 Tập 1: Cho x, y là hai số thực tùy ý. Khẳng định nào sau đây là đúng?

A. |x – y| = x – y;

B. | x – y| = |x| – |y|;

C. |x + y| = |x| + |y|;

D. |x + y| = |x| – |y| nếu x > 0 > y và |x| ≥ |y|.

Lời giải:

Đáp án đúng là: D

A sai , khi x < y

B sai nếu x = 0 và y khác 0

C sai, chẳng hạn khi x = -y và y khác 0

D đúng, theo quy tắc cộng hai số trái dấu.

Lời giải bài tập Toán lớp 7 Ôn tập chương 2 Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác