Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19)

Bài 4.20 trang 58 sách bài tập Toán lớp 7 Tập 1: Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).

a) Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.

b) Bằng cách tính số đo góc ADC, hãy cho biết ABCD có phải hình chữ nhật không.

Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19)

Lời giải:

a) Xét ∆ABD và ∆DCA có:  

AB = CD (do ABCD là hình bình hành)

AD chung

BD = AC (giả thiết hai đường chéo bằng nhau)

Do đó, ∆ABD = ∆DCA (c – c – c).

Xét ∆ADC và ∆BCD có:  

AD = BC (do ABCD là hình bình hành)

DC chung

AC = BD (giả thiết hai đường chéo bằng nhau)

Do đó, ∆ADC = ∆BCD (c – c – c).

b) Do ∆ABD = ∆DCA nên DAB^=ADC^.

Mặt khác vì ABCD là hình bình hành nên AB // CD, do đó DAB^+ADC^=180°(hai góc trong cùng phía).

Do vậy DAB^=ADC^=180°2=90°.

Hình bình hành ABCD có một góc vuông nên ta suy ra các góc còn lại cũng là góc vuông. Vậy ABCD là hình chữ nhật.

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác