Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19)
Bài 4.20 trang 58 sách bài tập Toán lớp 7 Tập 1: Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).
a) Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.
b) Bằng cách tính số đo góc ADC, hãy cho biết ABCD có phải hình chữ nhật không.
Lời giải:
a) Xét ∆ABD và ∆DCA có:
AB = CD (do ABCD là hình bình hành)
AD chung
BD = AC (giả thiết hai đường chéo bằng nhau)
Do đó, ∆ABD = ∆DCA (c – c – c).
Xét ∆ADC và ∆BCD có:
AD = BC (do ABCD là hình bình hành)
DC chung
AC = BD (giả thiết hai đường chéo bằng nhau)
Do đó, ∆ADC = ∆BCD (c – c – c).
b) Do ∆ABD = ∆DCA nên .
Mặt khác vì ABCD là hình bình hành nên AB // CD, do đó (hai góc trong cùng phía).
Do vậy .
Hình bình hành ABCD có một góc vuông nên ta suy ra các góc còn lại cũng là góc vuông. Vậy ABCD là hình chữ nhật.
Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT