Người ta chứng minh được rằng nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2

Bài 11 trang 36 sách bài tập Toán lớp 7 Tập 1: Người ta chứng minh được rằng:

- Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân hữu hạn.

- Nếu một phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân vô hạn tuần hoàn.

Hãy tìm số thập phân vô hạn tuần hoàn trong các số hữu tỉ sau: 720;256.

Lời giải:

Xét phân số 720 , ta có mẫu số của phân số là 20 = 22.5 có ước nguyên tố là 2 và 5 nên phân số này được viết dưới dạng số thập phân hữu hạn.

Xét phân ?số 256 , ta có mẫu số của phân số là 6 = 2.3 có ước nguyên tố là 2 và 3 nên phân số này được viết dưới dạng số thập phân vô hạn tuần hoàn.

Vậy số thập phân vô hạn tuần hoàn là 256 .

Xem thêm các bài giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Chân trời sáng tạo khác