Giải SBT Toán 7 trang 85 Tập 2 Cánh diều
Với Giải sách bài tập Toán 7 trang 85 Tập 2 trong Bài 8: Đường vuông góc và đường xiên SBT Toán 7 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 85.
Bài 52 trang 85 sách bài tập Toán lớp 7 Tập 2: Cho góc xOy và điểm B thuộc tia Ox, B ≠ O. Vẽ H là hình chiếu của điểm B trên đường thẳng Oy trong các trường hợp sau:
a) là góc nhọn;
b) là góc vuông;
c) là góc tù.
Lời giải:
a) là góc nhọn
b) là góc vuông
c) là góc tù
Bài 53 trang 85 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có H là hình chiếu của A trên đường thẳng BC, lấy điểm M nằm giữa A và H. Chứng minh:
a) BH = CH;
b) MB = MC;
c) MA < AC.
Lời giải:
a) Vì tam giác ABC cân tại A nên AB = AC.
Xét ∆AHB và ∆AHC có:
,
BA = AC (chứng minh trên),
AH là cạnh chung
Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).
Suy ra BH = CH (hai cạnh tương ứng).
Vậy BH = CH.
b) Vì ∆ABH = ∆ACH (chứng minh câu a)
Suy ra (hai góc tương ứng).
Xét ∆AMB và ∆AMC có:
BA = AC (chứng minh câu a),
(do ),
AM là cạnh chung
Do đó ∆ABM = ∆ACM (c.g.c).
Suy ra BM = CM (hai cạnh tương ứng).
Vậy BM = CM.
c) Vì là góc ngoài của tam giác CMH tại đỉnh M
Nên
Mà nên là góc tù
Xét tam giác AMC có là góc tù
Nên MC < AC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất).
Vậy MC < AC.
Bài 54 trang 85 sách bài tập Toán lớp 7 Tập 2: Từ một điểm A nằm ngoài đường thẳng d, vẽ đường vuông góc AH và các đường xiên AB, AC tùy ý (Hình 40).
a) So sánh độ dài AH và AB, AH và AC.
b) Chứng minh: Nếu AB = AC thì HB = HC; ngược lại, nếu HB = HC thì AB = AC.
Lời giải:
a) Ta có AH và AB lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.
Suy ra AH < AB.
Tương tự, AH và AC lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.
Suy ra AH < AC.
Vậy AH < AB và AH < AC.
b) • Nếu AB = AC.
Xét ∆AHB và ∆AHC có:
,
AB = AC (giả thiết),
AH là cạnh chung
Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).
Suy ra BH = CH (hai cạnh tương ứng).
• Nếu BH = CH
Xét ∆AHB và ∆AHC có:
,
BH = CH (giả thiết),
AH là cạnh chung
Do đó ∆ABH = ∆ACH (hai cạnh góc vuông).
Suy ra AB = AC (hai cạnh tương ứng).
Vậy nếu AB = AC thì HB = HC; ngược lại, nếu HB = HC thì AB = AC.
Bài 55 trang 85 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông tại A, M là trung điểm của AC.
a) Vẽ E là hình chiếu của A trên đường thẳng BM.
b) Vẽ F là hình chiếu của C trên đường thẳng BM.
c) Chứng minh BE + BF > 2AB.
Lời giải:
a)
b)
c) Xét ∆MAE và ∆MCF có:
,
MA = MC (vì M là trung điểm của AC),
(hai góc đối đỉnh)
Do đó ∆MAE = ∆MCF (cạnh huyền – góc nhọn).
Suy ra ME = MF (hai cạnh tương ứng).
Ta có BA và BM lần lượt là đường vuông góc và đường xiên kẻ từ điểm B xuống đường thẳng AC
Suy ra AB < BM.
Hay AB < BE + EM (1) và AB < BF – MF (2)
Cộng vế theo vế của (1) và (2) ta có:
AB + AB < BE + EM + BF – MF
Mà ME = MF
Do đó 2AB < BE + BF.
Vậy BE + BF > 2AB.
Bài 56 trang 85 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông cân tại A. Một đường thẳng a đi qua A. Gọi M và N lần lượt là hình chiếu của B và C trên đường thẳng a. Chứng minh:
a) ;
b) CN = MA;
c) Nếu a song song với BC thì MA = AN.
Lời giải:
a) Xét ∆MAB vuông tại M có: (trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Ta có
Suy ra
Lại có
Suy ra .
Vậy .
b) Xét ∆MAB và ∆NCA có:
,
BA = AC (vì tam giác ABC vuông cân tại A),
(chứng minh câu a).
Do đó ∆MAB = ∆NCA (cạnh huyền – góc nhọn).
Suy ra MA = NC (hai cạnh tương ứng).
Vậy MA = NC.
c) Vì tam giác ABC cân tại A nên
Lại có (tổng ba góc của tam giác ABC)
Suy ra .
• Nếu a // BC thì (hai góc so le trong).
Do đó .
Xét ∆ABM có (tổng ba góc của một tam giác)
Suy ra .
Do đó (cùng bằng 45°).
Xét ∆AMB có và nên ∆AMB vuông cân tại M.
Suy ra MA = MB (1)
• Nếu a // BC thì (hai góc so le trong)
Xét ∆ABM có (tổng ba góc của một tam giác)
Suy ra .
Do đó (cùng bằng 45°).
Xét ∆ANC có và nên ∆ANC vuông cân tại N.
Suy ra CN = AN (2)
Từ (1) và (2) suy ra MA = AN.
Vậy MA = AN.
Lời giải Sách bài tập Toán lớp 7 Bài 8: Đường vuông góc và đường xiên Cánh diều hay khác:
Xem thêm lời giải Sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
SBT Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
SBT Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác
SBT Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Cánh diều
- Giải SBT Toán 7 Cánh diều
- Giải lớp 7 Cánh diều (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều