Cho tam giác ABC = tam giác MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120 độ

Bài 26 trang 73 sách bài tập Toán lớp 7 Tập 2: Cho ∆ABC = ∆MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120°. Tính tổng số đo các góc MNP và MPN của tam giác MNP.

Lời giải:

Cho tam giác ABC = tam giác MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120 độ

Vì BO là phân giác của góc ABC nên ABO^=CBO^=ABC^2

Vì CO là phân giác của góc ACB nên ACO^=BCO^=ACB^2

Xét DCOB ta có: BOC^+OBC^+OCB^=180° (tổng ba góc của một tam giác).

Suy ra OBC^+OCB^=180°BOC^=180°120°=60°.

CBO^=ABC^2, BCO^=ACB^2.

Suy ra ABC^2+ACB^2=60°

Do đó ABC^+ACB^=2.60°=120°.

Mặt khác ∆ABC = ∆MNP nên ta có:

ABC^=MNP^ACB^=MPN^ (các cặp góc tương ứng).

Suy ra MNP^+MPN^=ABC^+ACB^=120°

Vậy MNP^+MPN^=120°.

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác