Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau:

Bài 6.6 trang 43 SBT Toán 12 Tập 2: Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau:

A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất”;

B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”;

C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7”.

Chứng minh rằng:

a) Hai biến cố A và B độc lập;

b) Hai biến cố B và C độc lập.

c) Hai biến cố A và C độc lập.

Lời giải:

a) Ta có:

Các phần tử của biến cố A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất” là:

A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)};

Các phần tử của biến cố B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”;

B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)}.

Có A ∩ B = {(1; 2)}.

Do đó, P(A) = 636=16 ; P(B) = 636=16 ; P(AB) = 136 .

Nhận thấy 136  = 16.16  hay P(AB) = P(A).P(B).

Ta có: P(A | B) = PABPB=136:16=16  = P(A);

           P(B | A) = PABPA=136:16=16  = P(B).

Vậy P(A | B) = P(A), P(B | A) = P(B).

Vậy hai biến cố A và B độc lập.

b) Các phần tử của biến cố C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7” là:

C = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)};

Có B ∩ C = {(5; 2)}.

Ta có: P(C) = 636=16 , P(BC) = 136 .

Suy ra P(BC) = P(C).P(B).

Nhận thấy: P(B | C) = PBCPC=136:16=16  = P(B);

                   P(C | A) = PBCPC=136:16=16  = P(C).

Vậy P(B | C) = P(B), P(C | A) = P(C).

Vậy hai biến cố C và B độc lập.

c) Ta có: A ∩ C = {(1; 6)} nên P(AC) = 16 .

Ta có: P(AC) = P(C).P(A).

Tương tự ý a, b ta suy ra A và C là hai biến cố độc lập.

Lời giải Sách bài tập Toán lớp 12 Bài 18: Xác suất có điều kiện hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác