Trong không gian Oxyz cho hai điểm A(2; 1; 1), B(2; 1; 3) trang 34 SBT Toán 12 Tập 2

Bài 5.21 trang 34 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho hai điểm A(2; 1; 1), B(2; 1; 3).

a) Viết phương trình mặt cầu đường kính AB.

b) Viết phương trình mặt cầu (S) có tâm là gốc tọa độ O(0; 0; 0) và mặt cầu (S) đi qua A.

Lời giải:

a) Gọi I(x; y; z) là trung điểm của AB, ta có:

x=2+22=2y=1+12=1z=1+32=2⇒ I(2; 1; 2).

Mặt cầu đường kính AB có tâm là I(2; 1; 2) và bán kính R = IA.

 IA = 222+112+212 = 1.

Vậy phương trình mặt cầu đường kính AB là:

(x – 2)2 + (y – 1)2 + (z – 2)2 = 12.

⇔ (x – 2)2 + (y – 1)2 + (z – 2)2 = 1.

b) Mặt cầu (S) tâm O và đi qua A có bán kính R = OA.

OA = 202+102+102= 6.

Vậy phương trình mặt cầu (S) là: (x – 0)2 + (y – 0)2 + (z – 0)2 = 62.

⇔ x2 + y2 + z2 = 6.

Lời giải Sách bài tập Toán lớp 12 Bài 17: Phương trình mặt cầu hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác