Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD

Bài 2.6 trang 44 SBT Toán 12 Tập 1: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:

a) EF=23MN;

b) EF=13CD.

Lời giải:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD

a) Xét tam giác AMN, ta có: AE = 23AM, AF = 23AN (E, F là trọng tâm tam giác ABC, ABD).

Theo định lí Thales đảo suy EF // MN và EF = 23MN.

EF và MN cùng hướng nên EF=23MN.

b) Xét tam giác BCD, có M, N là trung điểm CB, DB nên MN là đường trung bình của tam giác.

Ta có: MN // CD và MN = 12CD.

CD và MN cùng hướng nên MN=12CD.

Do đó, EF=23MN=23.12CD=13CD.

Vậy EF=13CD.

Lời giải Sách bài tập Toán lớp 12 Bài 6: Vectơ trong không gian hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác