Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau trang 25 SBT Toán 12 Tập 1

Bài 1.31 trang 25 SBT Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) y = x3 – 6x2 + 9x;

b) y = x3 + 3x2 + 6x + 4.

Lời giải:

a) y = x3 – 6x2 + 9x

1. Tập xác định: D = ℝ.

2. Sự biến thiên

Giới hạn tại vô cực: limxy=;  limx+y=+.

Ta có: y' = 3x2 – 12x + 9

           y' = 0 ⇔ 3x2 – 12x + 9 = 0 ⇔ x = 1 hoặc x = 3.

Ta có bảng biến thiên như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau trang 25 SBT Toán 12 Tập 1

Hàm số đồng biến trên các khoảng (−∞; 1) và (3; +∞).

Hàm số nghịch biến trên khoảng (1; 3).

Hàm số đạt cực đại tại x = 1 với y = 4.

Hàm số đạt cực tiểu tại x = 3 với yCT = 0.

3. Đồ thị hàm số

Đồ thị hàm số cắt trục tung tại điểm (0; 0).

Đồ thị hàm số cắt trục hoành tại điểm (0; 0) và (3; 0).

Đồ thị nhận điểm (2; 2) làm tâm đối xứng.

Ta có đồ thị hàm số như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau trang 25 SBT Toán 12 Tập 1

b) y = x3 + 3x2 + 6x + 4

1. Tập xác định: D = ℝ.

2. Sự biến thiên

Giới hạn tại vô cực: limxy=;  limx+y=+. 

Ta có: y' = 3x2 + 6x + 6 = 3(x2 + 2x + 1) + 3 = 3(x + 1)2 + 3 > 0 với mọi x.

Ta có bảng biến thiên như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau trang 25 SBT Toán 12 Tập 1

Hàm số đồng biến trên ℝ.

Hàm số không có cực trị.

3. Đồ thị hàm số

Đồ thị hàm số cắt trục tung tại điểm (0; 4).

Đồ thị hàm số cắt trục hoành tại điểm (−1; 0).

Đồ thị hàm số có tâm đối xứng là điểm (−1; 0).

Đồ thị hàm số như sau:

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau trang 25 SBT Toán 12 Tập 1

Lời giải Sách bài tập Toán lớp 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác