Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó

Bài 4 trang 60 SBT Toán 12 Tập 2: Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó.

a) 4x2 + y2 + z2 – 2x – 14y – 7z + 4 = 0;

b) x2 + y2 + z2 + 6x – 4y – 4z – 19 = 0;

c) x2 + y2 + z2 – 4x – 4y – 6z + 40 = 0.

Lời giải:

a) Phương trình 4x2 + y2 + z2 – 2x – 14y – 7z + 4 = 0 không phải là phương trình mặt cầu do hệ số của x2 và y2 khác nhau.

b) Phương trình x2 + y2 + z2 + 6x – 4y – 4z – 19 = 0 có dạng

x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −3; b = 2; c = 2; d = −19.

Ta có: a2 + b2 + c2 − d = 9 + 4 + 4 + 19 = 36 > 0, suy ra phương trình đã cho là phương trình mặt cầu tâm I(−3; 2; 2), bán kính R = 36=6

c) Phương trình x2 + y2 + z2 – 4x – 4y – 6z + 40 = 0, có dạng:

x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = 2; b = 2, c = 3 và d = 40.

Ta thấy a2 + b2 + c2 – d = 4 + 4 + 9 – 40 = −23 < 0.

Suy ra phương trình đã cho không phải là phương trình mặt cầu.

Lời giải SBT Toán 12 Bài 3: Phương trình mặt cầu hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác